komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:38 Mi 16.11.2005 | Autor: | christl |
Hallo,
wie schon in lin. Algebra hab ich jetzt auch noch das gleiche Problem in Differential und Integralrechnung.
Ich war die letzten 2 Wochen krank, so dass ich nicht die Vorlesungen besuchen konnte. Nun kommt ein Kumpel von mir nicht aus dem Knie, so dass ich die Aufzeichnungen auch noch nicht bekommen hab und ohne fällt es mir ziemlich schwer die Aufgaben zu lösen.
Bitte helft mir!!!
1)
Berechnen Sie die folgenden Ausdrücke mit komplexen Zahlen, d.h. geben Sie Ihre Darstellungen in der Form a + bi mit a,b [mm] \in \IR [/mm] an:
(3 - [mm] 2i)^{3} [/mm] , (5/ (3 - 4i)) + (10/ (4 + 3i)) , ((1 - i) / (1 + i))^10 ,
[mm] \summe_{k=1}^{7} [/mm] ((1 - i) / ( [mm] \wurzel{2} ))^k [/mm] .
2)
Es seien [mm] z_{1} [/mm] , [mm] z_{2} \in \IC [/mm] beliebige komplexe Zahlen.
a) Beweisen Sie: Aus l [mm] z_{1} [/mm] + [mm] z_{2} [/mm] l [mm] \le [/mm] 1 und l [mm] z_{1} [/mm] - [mm] z_{2} [/mm] l [mm] \le [/mm] 1 folgt l [mm] z_{1} l^2 [/mm] + l [mm] z_{2} l^2 \le [/mm] 1.
b) Beweisen Sie: Aus [mm] lz_{1} l^2 [/mm] + [mm] lz_{2}l^2 \le [/mm] 1 folgt [mm] lz_{1} [/mm] + [mm] z_{2}l \le [/mm] 1 oder [mm] iz_{1} [/mm] - [mm] z_{2}i \le [/mm] 1
c) Gilt auch die Umkehrung zu a)?
3)
Beweisen sSie die folgenden drei Behauptungen:
a) Für z [mm] \in \IC [/mm] gilt lz + 1l > lz - 1l ganu dann, wenn Re z > 0 ist.
b) Für z [mm] \in \IC, [/mm] z [mm] \not= [/mm] 0 gilt Re (z + 1/z) = 0 ganu dann, wenn Re u = 0 ist.
c) Für z [mm] \in \IC, [/mm] z [mm] \not= [/mm] 0 gilt Im (z + 1/z) = 0 genau dann, wenn Im z = 0 oder lzl = 1 ist.
4)
Die filgenden drei Teilmengen [mm] G_{0} [/mm] , [mm] G_{+} [/mm] , [mm] G_{-} \subseteq \IC [/mm] veranschauliche man sich in der Gaußschen Zahlenebene, d.h. man überlege sich, welche geometrischen Objekte dadurch beschrieben werden. Dazu seien a,a [mm] \in \IC [/mm] , b [mm] \not= [/mm] 0 und
[mm] G_{0} [/mm] := {z [mm] \in \IC [/mm] l Im ((z - a)/b) = 0} ,
[mm] G_{+} [/mm] := {z [mm] \in \IC [/mm] l Im ((z - a/b) > 0} ,
[mm] G_{-} [/mm] := {z [mm] \in \IC [/mm] l Im ((z - a/b) < 0 }.
So das wars. Danke schon im voraus.
Christl
P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Du könntest dir mehr Mühe geben, die Angaben ordentlich hinzuschreiben. Man kann das nämlich teilweise nicht entziffern. Was soll zum Beispiel das Klein-L in Aufgabe 2? Ich habe da zwar die Vermutung, daß es sich um einen Betragsstrich handeln soll, weil es sonst total sinnlos wäre, aber so ganz sicher bin ich mir da nicht. Verwende für Betragsstriche das Zeichen | (Tastatur: AltGr + <).
Zu Aufgabe 1):
Du kannst mit komplexen Zahlen wie üblich rechnen. Du mußt nur die Regel [mm]\operatorname{i}^2 = -1[/mm] beachten. Bei Brüchen kriegst du das [mm]\operatorname{i}[/mm] aus dem Nenner weg, indem du so erweiterst, daß im Nenner die dritte binomische Formel entsteht.
Beispiele:
[mm](1 - 2 \operatorname{i}) (-3 + 5 \operatorname{i}) = -3 + 5 \operatorname{i} + 6 \operatorname{i} \underbrace{- 10 \operatorname{i}^2}_{= + 10} = 7 + 11 \operatorname{i}[/mm]
[mm]\frac{1 - \operatorname{i}}{2 + 3 \operatorname{i}} = \frac{(1 - \operatorname{i})(2 - 3 \operatorname{i})}{(2 + 3 \operatorname{i})(2 - 3 \operatorname{i})} = \ldots[/mm]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:30 Do 17.11.2005 | Autor: | leduart |
Hallo
google wimmelt von Anleitungen zum rechnen mit komplexen Zahlen, such dir was aus und probiers. z. Bsp gib in googl ein rechnen mit komplexen Zahlen.
Es ist wirklich sinnlos wenn wir das alles noch mal aufschreiben!
Wenn du dann noch fragen hast gibt dir sicher gern jemand Antwort, aber nen Anfang musst du selber machen
Gruss leduart
|
|
|
|