www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - komplexe Zahlen
komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Do 12.04.2007
Autor: odin666

Aufgabe
Welche Punktmenge M der Gauß`schen Zahlenebene wird durch die folgenden Gleichungen charakterisiert?

|z-1|=Re(z)

und

[mm] |\bruch{z}{z-3i}| [/mm] =2

Hallo, ich würde gerne wissen, wie ich bei der ersten Aufgabe dadrauf komme, dass die a)
|z-1|=Re(z) mit z=x+i*y:
[mm] \wurzel{(x-1)²+y²}=x [/mm] ist.

bei der zweiten soll aus dem oben geschriebenem Betrag

|z|²=4*|z-3i|² mit z=x+ i*y:
x²+y²=4*[x²+(y-3)²]

werden.....


Was hat meine gute Professorin da gemacht??? bin für jede Hilfe logischerweise dankbar.

Gruß




        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Do 12.04.2007
Autor: NewtonsLaw

Hi!

Kann dir vorerst nur bei der ersten helfen...
Also, wenn z=x+j*y ist, dann ist Re(z)=x, also genau der Realteil von z.
Dann wird z einfach in die Formel eingesetzt:
|z-1|=|x+j*y-1|=|(x-1)+j*y|=wurzel{(x-1)²+y²}=x

Là voilà! ;-)

PS: Das j bei mir ist natürlich das Imaginärzeichen i!

Bezug
                
Bezug
komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Fr 13.04.2007
Autor: odin666

Dann wird z einfach in die Formel eingesetzt:
|z-1|=|x+j*y-1|=|(x-1)+j*y|=wurzel{(x-1)²+y²}=x

also ich habe nun Re(z)=x gesetzt, dann habe ich das z=x+i*y eingesetzt und dann habe ich das x und die -1 zusammengefasst, da die -1 zu der realen Zahl gehört, richtig???
dann hab ich auch quadriert um ein i² zu erhalten, dafür könnte ich ja dann -1 einsetzen, das problem is dann würde ich ja:
x²=(x-1)²-1*y²   erhalten. nur das is ja falsch, die lösung is ja anders.

Bezug
                        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Fr 13.04.2007
Autor: NewtonsLaw

hi Odin!

Das Problem ist: Es ist nur der Betrag gemeint! Du darfst das j nicht quadrieren!!

Stell dir folgendes vor: du hast ne komplexe Zahl z.B. die Zahl z=x+j*y
[mm] |z|=\wurzel{x²+y²} [/mm]
Das j hat da nix mehr zu suchen! Genauso ist es oben! Du fast es zusammen, hast sozusagen ne andre komplexe Zahl im Betrag stehen, und bildest daraus den Betrag.
Hoff das wahr einigermaßen verständlich??

Bezug
        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Do 12.04.2007
Autor: leduart

Hallo Odin

[mm] $|\bruch{z}{z-3i}|=2 [/mm] <=> |z|=2*|z-3i| |x+iy|=|2x+i*2*(y-3)|$

jetzt verwenden dass [mm] $|a+ib|^2=a^2+b^2$ [/mm]

beide Seiten quadrieren und du hast:

[mm] $x^2+y^2=(2x)^2+(2*(y-3))^2$ [/mm]

das ist alles.
Gruss leduart

Bezug
                
Bezug
komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:46 Sa 14.04.2007
Autor: odin666

Vielen Dank für eure Hilfe hab die Aufgaben gelöst und eigentlich war das gar net schwer, Danke für die prompte Hilfe.

Gruß
Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de