www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - komplexe Zahlen
komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen: Frage
Status: (Frage) beantwortet Status 
Datum: 20:48 So 16.01.2005
Autor: Chironimus

Ein herzliches hallo an euch alle.

Ich habe eine Frage bzgl. komplexe Zahlen.

Wir habe 2 Aufgaben bekommen, bei denen ich teilweise nicht weiterkomme.

Aufgabe 1 : Bestimmen sie Real- und Imaginärteil, sowie den Betrag der folgenden komplexen Zahlen:

a)    [mm] \bruch{3+5i}{7i+1} [/mm]

b)    [mm] \bruch{1}{ (3-i)^{2}} [/mm]

c)    [mm] (\bruch{-1+i \wurzel{3}}{2})^{3} [/mm]

d)    [mm] i^{n} [/mm]    für  n  [mm] \in \IN_{0} [/mm]

2. Aufgabe: Bestimmen und skizzieren Sie in der koplexen Zahlenebene die folgenden Mengen:

a)  [mm] \{z \in \IC | Im z^{2} > c \}, [/mm] c [mm] \in \IR [/mm] fest

b)  [mm] \{z \in \IC | |z-i| + |z+i| < 4 \} [/mm]

c)  [mm] \{z \in \IC | |z-a| = |1- \overline{a}z| \}, [/mm] a [mm] \in \IC [/mm] fest


Zu Aufgabe 1)

Bei a) bekam ich für den Realteil  [mm] \bruch{2}{3} [/mm] , den Imaginärteil  [mm] \bruch{1}{3}i [/mm] und für den Betrag  [mm] \wurzel{ \bruch{1}{3}} [/mm] raus. Stimmt das ??

zu b) Realteil  [mm] \bruch{1}{5} [/mm] Imaginärteil -  [mm] \bruch{2}{15}i [/mm]
Betrag  [mm] \wurzel{\bruch{1}{45}} [/mm] , stimmt das ?

zu c ) und d) fehlt mir irgendwie der Ansatz, ich weiß nicht, wie ich ran gehen soll. Wäre nett, wenn mir dabei jemand helfen könnte.

Bei Aufgabe 2 ist das Problem, dass ich gar nicht weiß, was ich da machen soll und würde mich auch über Lösungsansätze freuen.

Danke schonmal

Ich habe diese Frage auf keiner anderen Internetseite gestellt !!

        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 So 16.01.2005
Autor: KingMob

Hallo!
Zu deiner ersten Frage :
1) z =  [mm] \bruch{3+5i}{7i+1} [/mm] * [mm] \bruch{-7i+1}{-7i+1} [/mm] = [mm] \bruch{38-16i}{50} [/mm] = [mm] \bruch{19}{25} [/mm] - [mm] \bruch{8}{25} [/mm] i
Demnach : Re(z) = [mm] \bruch{19}{25} [/mm] und Im(z) = [mm] -{\bruch{8}{25}} [/mm] (ohne i !!!) sowie |z| = [mm] {\wurzel{({\bruch{19}{25}})^2 + (-{\bruch{8}{25}})^2}} [/mm] = [mm] \bruch{\wurzel{17}}{5} [/mm]
2) z = [mm] \bruch{2}{25} [/mm] + [mm] \bruch{3}{50} [/mm] i
3) z = [mm] \bruch{1}{4} [/mm] - [mm] \bruch{\wurzel{3}}{4} [/mm] i
4) [mm] \forall [/mm] n [mm] \ge [/mm] 1 : [mm] i^{n} [/mm]
=  i (für n=4k+1)
= -1 (für n=4k+2)
= -i (für n=4k+3)
=  1 (für n=4k+4) (k [mm] \in \IN) [/mm]
MfG



Bezug
                
Bezug
komplexe Zahlen: Frage bzgl Antwort
Status: (Frage) beantwortet Status 
Datum: 16:40 Mo 17.01.2005
Autor: Chironimus

Hi, zunächst mal Danke für deine rasche Antwort.

Habe aber bzgl. dieser noch ein paar Fragen.

Zu der ersten, dort hatte ich mit 7i - 1 erweitert und nicht wie du mit  -7i + 1. Aber das ist schon richtig, wie du es gemacht hast ??!! :-)

Bei der zweiten, genau so.

Die vierte Aufgabe versteh ich allerdings nicht, wie kommst du da auf
n= 4k + ... ??

Und zu meiner zweiten haste nicht zufällig auch ne Idee ???

Ich würde mich über eine Antwort sehr freuen.

Gruß Chironimus

Bezug
                        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Mo 17.01.2005
Autor: KingMob

Zu Frage 1 nochmal : Das Ziel liegt darin, den Nenner der komplexen Zahl rational zu machen, und zwar indem man den Nenner mit der konjugiert komplexen Zahl erweitert. Bspw. zu 7i-1 ist -7i-1 die konjugiert komplexe Zahl (mehr Infos : siehe http://de.wikipedia.org/wiki/Konjugation_(Mathematik)).
Bei der vierten Aufgabe setzt du zunächst einfach beliebige Werte n [mm] \ge [/mm] 1 ein und stellst fest, dass sich die Werte von [mm] i^{n} [/mm] periodisch wiederholen. Z.B. [mm] i^{n} [/mm] = -1 für n [mm] \in \{2,6,10,...\}, [/mm] also für n=4k+2 mit k [mm] \in \IN \cup \{0\}. [/mm]
Zu Frage 2 : Hier sollst du die Ausdrücke umformen mithilfe diverser Eigenschaften komplexer Zahlen, insbesondere z=x+iy , [mm] |z|=\wurzel{x^{2}+y^{2}} [/mm] , um im Endeffekt (Un)Gleichungen mit x,y zu erhalten, und daraus eine geometrische Interpretation abzuleiten.

Bezug
                                
Bezug
komplexe Zahlen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:36 Di 18.01.2005
Autor: Chironimus

Hey, ich dank dir, jetzt hab ichs vertsanden !

Bezug
                
Bezug
komplexe Zahlen: Frage
Status: (Frage) beantwortet Status 
Datum: 02:01 Mi 19.01.2005
Autor: michael7

Hallo,

>  3) z = [mm]\bruch{1}{4}[/mm] - [mm]\bruch{\wurzel{3}}{4}[/mm] i

ich habe es jetzt zweimal nachgerechnet und bekomme immer 1 als Ergebnis. Kann es sein, dass Du Dich bei obiger Loesung vertan hast oder habe ich einen Fehler drin?

Michael

Bezug
                        
Bezug
komplexe Zahlen: Dein Ergebnis stimmt ...
Status: (Antwort) fertig Status 
Datum: 08:48 Mi 19.01.2005
Autor: Loddar

Guten Morgen Michael,

Du hast recht. Auch ich erhalte:

[mm] $\left( \bruch{-1 \ + \ i*\wurzel{3}}{2} \right)^3 [/mm] \ = \ 1$


Grüße
Loddas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de