www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - komplexe Zahlen
komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Zahlen: kurze Frage
Status: (Frage) beantwortet Status 
Datum: 09:34 Do 10.02.2005
Autor: B777

Moin zusammen,

ich hänge hier bei folgender Aufgabe fest:

Man berechne alle Lösungen [mm] z\in\IC [/mm] der folgenden Gleichung

[mm] i\left| z \right|= \overline{z} [/mm]

Setze z = x+iy

=> [mm] i\left| x+iy \right|= [/mm] x-iy

Wenn ich jetzt auf der linken Seite i mit dem Betrag multipiliziere kommt

ix-y       (da [mm] i^2= [/mm] -1)  oder bleibt das durch die betragsstriche positiv?
(vielleicht eine etwas böde frage, aber da bleibe ich momentan dran hängen)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
komplexe Zahlen: Definition |z| anwenden
Status: (Antwort) fertig Status 
Datum: 10:01 Do 10.02.2005
Autor: Loddar

Guten Morgen B777 !



> Man berechne alle Lösungen [mm]z\in\IC[/mm] der folgenden
> Gleichung
> [mm]i\left| z \right|= \overline{z}[/mm]
> Setze z = x+iy   => [mm]i\left| x+iy \right| = x-iy[/mm]

[ok] Bis hierher ok.



> Wenn ich jetzt auf der linken Seite i mit dem Betrag
> multipiliziere kommt

[notok] Das darfst Du nicht machen ...


Aber benutze für den Betrag von komplexen Zahlen doch folgende Definition:  [mm] $\left| \ a + b*i \ \right| [/mm] \ = \ [mm] \wurzel{a^2 + b^2}$ [/mm]

Dann hast Du anstelle des Betrages eine reelle Zahl und kannst nun mit $i$ ausmultiplizieren.

Kommst Du nun alleine weiter?


Loddar


Bezug
                
Bezug
komplexe Zahlen: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 13:28 Do 10.02.2005
Autor: B777

Uuups, danke für den Hinweis

Daraus ergibt sich dann:

i * [mm] \left[ \ \wurzel{x^2 + y^2}\right] [/mm] = x-iy

Du hast geschrieben, dass man eine reelle zahl erhalten würde, die man dann mit i multiplizieren könnte.  Hab ich etwas missverstanden ?! Reelle Zahlen ergeben sich so nämlich nicht.


Bezug
                        
Bezug
komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Do 10.02.2005
Autor: Loddar

Hallo B777!

Aber der Term [mm] $\wurzel{x^2 + y^2}$ [/mm] ist doch reell !!
Dieser wird nun mit $i$ multipliziert (steht ja schon da).

Nun umstellen, so daß Du Imaginärteil und Realteil "ablesen" kannst ...


Loddar


Bezug
                                
Bezug
komplexe Zahlen: alles klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 Do 10.02.2005
Autor: B777

Ich glaube, komplexe zahlen werde ich mir nochmal genauer anschauen müssen. Denke, dann ist erstmal alles klar. Werde das mal ausrechnen...
Danke!!

Bezug
                                        
Bezug
komplexe Zahlen: richtig?
Status: (Frage) beantwortet Status 
Datum: 16:04 Do 10.02.2005
Autor: B777

Hi,

ich habe z= 0 raus. Bin mir aber nicht sicher ob das stimmt. Habe auf beiden Seiten quadriert und zusammengefasst (?!?)


Bezug
                                                
Bezug
komplexe Zahlen: nein!
Status: (Antwort) fertig Status 
Datum: 16:28 Do 10.02.2005
Autor: Paulus

Hallo B777

wie bist du denn darauf gestossen??

Hattest du nicht:

[mm] $i*\wurzel{(x^2+y^2)}=x-iy$? [/mm]

Weil links eine Rein Imaginäre Zahl steht, sollte auch rechts eine solche stehen.

Damit kann man schon mal schliessen, dass der Realteil Null sein muss, also $x=0_$

Damit wird deine Gleichung zu

[mm] $i*\wurzel{y^2}=-iy$ [/mm]

Dividiert durch $i_$:
[mm] $\wurzel{y^2}=-y$ [/mm]

[mm] $\wurzel{y^2}+y=0$ [/mm]

$|y|+y=0_$

Kannst du jetzt selber weiter rechnen und uns dein Resultat zur Kontrolle posten?

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de