www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "komplexe Zahlen" - komplexe ungleichung
komplexe ungleichung < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 So 07.02.2010
Autor: johnyan

Aufgabe
Finden Sie alle komplexen Zahlen z; welche die Ungleichung

[mm] \left|\bruch{2iz+4}{(1+i)z}\right|^2 \le [/mm] 2

erfüllen. Skizzieren Sie die erhaltene Lösungsmenge in der Gaußschen Zahle-
nebene.

ich habe erstmal versucht über z=x+iy, alles einsetzen und dann nach imaginärteil und realteil zu sortieren, aber dann würde die rechnung immer länger und ich bekam sehr lange terme, und am ende kam meiner meinung nach auch nichts vernünfiges raus.

[mm] \bruch{2x^2+4x+4y^2-4y}{2x^2+2y^2} [/mm] war dann der realteil
[mm] \bruch{2x^2-4x-4y}{2x^2+2y^2} [/mm] war der imaginärteil

und an der stelle dachte ich, dass man ganz anders an die aufgabe gehen müsste, kann mir ein helfen?

        
Bezug
komplexe ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Mo 08.02.2010
Autor: fred97

Es ist    $|2iz+4| = |2i(z-2i)| = 2|z-2i|$ und $|(1+i)z| = [mm] \wurzel{2}|z|$ [/mm]

Somit:

$ [mm] \left|\bruch{2iz+4}{(1+i)z}\right|^2 \le [/mm] 2 [mm] \gdw [/mm] |z-2i|=|z| $

So das sieht doch schon mal etwas freundlicher aus.

Wegen $|z-2i|=|z| [mm] \gdw [/mm] |z-2i|=|z-0| $ sind also alle Punkte z gesucht, die zum Punkt 2i den gleichen Abstand haben wie zum Punkt 0. Zeichne diese Punkte mal



Edit: es muß natürlich  

$ [mm] \left|\bruch{2iz+4}{(1+i)z}\right|^2 \le [/mm] 2 [mm] \gdw |z-2i|\le|z| [/mm] $ lauten



FRED

Bezug
                
Bezug
komplexe ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:19 Mo 08.02.2010
Autor: johnyan

sind alle z also auf der gerade, die durch i geht?

und diese umformung verstehe ich noch nicht ganz
$ [mm] \left|\bruch{2iz+4}{(1+i)z}\right|^2 \le [/mm] 2 [mm] \gdw [/mm] |z-2i|=|z| $
bitte noch um erklärung


Bezug
                        
Bezug
komplexe ungleichung: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 13:25 Mo 08.02.2010
Autor: Roadrunner

Hallo johnyan!


[ok] Genau ...


Gruß vom
Roadrunner


Bezug
                        
Bezug
komplexe ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Mo 08.02.2010
Autor: fred97


> sind alle z also auf der gerade, die durch i geht?

           ...............und parallel zur reelen Achse ist...............



>  
> und diese umformung verstehe ich noch nicht ganz
>  [mm]\left|\bruch{2iz+4}{(1+i)z}\right|^2 \le 2 \gdw |z-2i|=|z|[/mm]
>  
> bitte noch um erklärung


Hatee ich Dir doch schon gesagt: $ |2iz+4| = |2i(z-2i)| = 2|z-2i| $ und $ |(1+i)z| = [mm] \wurzel{2}|z| [/mm] $

FRED

>  


Bezug
                                
Bezug
komplexe ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Mo 08.02.2010
Autor: johnyan

ja, das mit parallel hab ich vergessen zu schreiben

also meine frage ist eher, ob das nicht
$ [mm] \left|\bruch{2iz+4}{(1+i)z}\right|^2 \le [/mm] 2 [mm] \gdw [/mm] |z-2i| [mm] \le [/mm] |z| $
also der abstand zu 2i kleiner gleich dem abstand zu 0,
heißen soll.


Bezug
                                        
Bezug
komplexe ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Mo 08.02.2010
Autor: schachuzipus

Hallo John,

> ja, das mit parallel hab ich vergessen zu schreiben
>  
> also meine frage ist eher, ob das nicht
> [mm]\left|\bruch{2iz+4}{(1+i)z}\right|^2 \le 2 \gdw |z-2i| \le |z|[/mm]
> also der abstand zu 2i kleiner gleich dem abstand zu 0,
>  heißen soll.

Ja, da hast du recht.

Nichtsdestotrotz ist Freds Umformung mehr als hilfreich:

Setze nun $z=x+iy$ ein und löse die Ungleichung [mm] $|z-2i|\le|z|$ [/mm] auf ...

Gruß

schachuzipus

>  


Bezug
                                                
Bezug
komplexe ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:39 Mo 08.02.2010
Autor: johnyan

gut, die lösung ist ja dann nicht mehr schwer, y [mm] \ge [/mm] 1, also die ganze fläche über der gerade, die durch i geht und parallel zur reellen achse ist.

vielen dank an euch alle!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de