www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - komplexe zahl
komplexe zahl < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:27 Di 20.11.2007
Autor: beta81

Aufgabe
man berechne [mm] z=\frac{(-2+2i)^7}{(1+\sqrt{3}i)^5}=\frac{w_1^7}{w_2^5} [/mm] mit hilfe von polarkoordinaten in der form [mm] z=r(\cos\phi+i\sin\phi). [/mm]

hallo,

ich hab folgendes gemacht:

[mm] z_1=w_1^7=(\sqrt{8})^7(\exp(-i\pi/4))^7=512\sqrt{8}\exp(-i7\pi/4), [/mm]

da [mm] \arctan\frac{Im(w_1)}{Re(w_1)}=-\pi/4 [/mm] ist, und

[mm] z_2=w_2^5=32\exp(i5\pi/3), [/mm]

da  [mm] \arctan\frac{Im(w_2)}{Re(w_2)}=\pi/3 [/mm] ist.

somit erhalte ich insgesamt:

[mm] z=\frac{z_1}{z_2}=\frac{512\sqrt{8}\exp(-i7\pi/4)}{32\exp(i5\pi/3)}=16\sqrt{8}\exp(-i7\pi/4-i5\pi/3)=16\sqrt{8}\exp(-i\pi/12)=16\sqrt{8}(\cos(\pi/12)-i\sin(\pi/12)). [/mm]

ist das so richtig?

danke!
gruss beta

        
Bezug
komplexe zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Di 20.11.2007
Autor: leduart

Hallo
Nur in der allerletzten Zeile ein Fehler:-7/4-5/3=-41/12
da du immer [mm] 2\pi [/mm] addieren kannst hast du dann [mm] -17/12\pi [/mm] oder [mm] +7/12\pi [/mm]
(ich hätte schon statt [mm] -7/4\pi -7/4\pi+2\pi=1/4\pi [/mm] geschrieben.)
Gruss leduart

Bezug
        
Bezug
komplexe zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Di 20.11.2007
Autor: generation...x

Ich muss leduart leider widersprechen: Es gibt noch einen Fehler. Du hast nicht beachtet, dass arctan(-1) nicht eindeutig ist (hier hilft eine Skizze). In deinem Fall landest du wohl eher bei [mm] \bruch{3 \pi}{4} [/mm] .

Bezug
                
Bezug
komplexe zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Di 20.11.2007
Autor: beta81

hallo, danke fuer die antwort.

> Du hast nicht beachtet, dass arctan(-1) nicht
> eindeutig ist (hier hilft eine Skizze). In deinem Fall
> landest du wohl eher bei [mm]\bruch{3 \pi}{4}[/mm] .

ich hab grad den arctan angeschaut (in widipedia). meiner meinung nach ist er da auch eindeutig und hat den wert [mm] -\pi/4. [/mm] wie kommst du auf [mm] 3\pi/4? [/mm]

gruss beta

Bezug
                        
Bezug
komplexe zahl: Gauß'sche Zahlenebene
Status: (Antwort) fertig Status 
Datum: 14:21 Di 20.11.2007
Autor: Loddar

Hallo beta!


Du musst Dir den Winkel mal in der Gauß'schen Zahlenebene klar machen: da liegt [mm] $z_1 [/mm] \ = \ -2+2*i$ eindeutig im 2. Quadranten und damit auch im Winkelbereich [mm] $\bruch{\pi}{2} [/mm] \ [mm] \le [/mm] \ [mm] \varphi_1 [/mm] \ [mm] \le [/mm] \ [mm] \pi$ [/mm] .


Gruß
Loddar


Bezug
                        
Bezug
komplexe zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Di 20.11.2007
Autor: generation...x

Streng genommen ist der Wertebereich von arctan nur [mm](-\bruch{\pi}{2}, \bruch{\pi}{2})[/mm]. Wenn du dir aber den Tangens anschaust, kannst du ihn ja für beliebige Werte (außer [mm] \bruch{k*\pi}{2} [/mm] ) definieren. Also ist der arctan nicht immer die direkte Umkehrfunktion! Daher muss man schon mal 'ne Skizze machen, um zu wissen, welcher Winkel jetzt wirklich gemeint ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de