www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - konforme Abbildung auch in 3D?
konforme Abbildung auch in 3D? < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konforme Abbildung auch in 3D?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:57 Mi 10.05.2006
Autor: johannes-et

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: []http://matheplanet.com

Hallo,

ich würde gerne mal wissen, ob man die konforme Abbildung auch üder die Zweidimensionalität hinaus steigern kann. In der Literatur zur konformen Abbildung ist hier so gut wie nichts zu finden.
Grundproblem ist meiner Ansicht die Tatsache, dass in der konformen Abbildungen komplexe Zahlen benutzt werden. Dort haben wir nur 2 Veränderliche, den Real- und den Imaginärteil. Den einzigen Hinweis, dass es evtl. doch auf die Dreidimensionalität übertragbar ist, habe ich bei W.v.Koppenfels "Praxis der konformen Abbildung" gefunden. Hier wird vorgeschlagen, dass zur Berechnung der konformen Abbildung im drei- und mehrdimensionalen Raum anstelle von komplexen Zahlen Quaternionen eingesetzt werden. Diese bieten insgesamt 4 Variable. Allerdings gilt bei Quaternionen kein kommutatives Gesetz, was die Berechnungen dann vermutlich deutlich aufwendiger machen würde.
Weiß hier jemand genaueres?

Danke im Voraus.

Johannes

        
Bezug
konforme Abbildung auch in 3D?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Sa 20.05.2006
Autor: topotyp

Konforme Abbildungen von [mm] $\mathbb{C}\cup\{\infty\}$ [/mm] auf sich
sind genau die Möbiustransformationen.  Die Möbiustransformationen
lassen sich auf [mm] $\mathbb{R}^n$ [/mm] übertragen und daher wird man als
konforme Abbildung auf jeden Fall eine Einschränkung einer Möbiustransformation verstehen. Ob es hier weitere Konzepte gibt, weiss
ich nicht. Auf jeden Fall ist man ja in der Kategorie der rellen Räume
und hier muss man Konformität als Winkeltreuheit, etc. auffassen, aber
nicht als Lösung irgendwelcher Cauchy-Riemann Gleichungen.

Natürlich gibt es aber im mehrdimensionalen komplexen konforme Abbildungen. Das sind einfach biholomorphe Abbildungen
zwischen zwei komplexen Mannigfaltigkeiten.

Gruss topotyp

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de