konstante fkt < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Aufgabe | hey kannst mir ne antwort auf diese frage gebn weil die ist wirklich schwer ich hab in ca. 20 tagen aufnahmeprüfung in einer realoberstufngymnasium und ich bitte um hilfe...=) also meine erste frage ist die
1.) vereinfache (2a-3b)²-(2a+3b)²-(a-b)*(a+b)=
2.)berechne. (6u²-5v²)*(2u+3v)=
3.)bestimme definitions und lösungsmenge(grundmenge ist R) x+3 durch x-3 -x-3durch x+3 = 2x durch x²-9
könntn sie mir sagen wie man es rechnet ich will echt diese aufnahmsprüfung schaffen ich hoffe sie können mir weiter helfen .=)
wie und was mann machn muss das mann dieses ergebniss herauskriegt.
ich hoffe sie können mir ganz ganz toll helfen ich wäre ihnen sehr dankbar.
dankeschön der sportmann16 |
hey kannst mir ne antwort auf diese frage gebn weil die ist wirklich schwer ich hab in ca. 20 tagen aufnahmeprüfung in einer realoberstufngymnasium und ich bitte um hilfe...=) also meine erste frage ist die
1.) vereinfache (2a-3b)²-(2a+3b)²-(a-b)*(a+b)=
2.)berechne. (6u²-5v²)*(2u+3v)=
3.)bestimme definitions und lösungsmenge(grundmenge ist R) x+3 durch x-3 -x-3durch x+3 = 2x durch x²-9
könntn sie mir sagen wie man es rechnet ich will echt diese aufnahmsprüfung schaffen ich hoffe sie können mir weiter helfen .=)
wie und was mann machn muss das mann dieses ergebniss herauskriegt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:26 Mo 12.06.2006 | Autor: | Seppel |
Hallo sportmann16!
Zu 1):
Um das ganze zu vereinfachen, multiplizierst du das ganze am besten aus. Also:
[mm] $(2a-3b)^2-(2a+3b)^2-(a-b)*(a+b)=4a^2-12ab+9b^2-(4a^2+12ab+9b^2)...$
[/mm]
Danach zusammenfassen.
Nummer 2) so machen, wie es da steht: berechnen. Also auch wieder ausmultiplizieren.
Zu 3):
Ist dieser Term gemeint? :
[mm] $\frac{x+3}{x-3}-\frac{x-3}{x+3}$
[/mm]
Auf den gleichen Nenner bringen:
[mm] $\frac{(x+3)(x+3)}{(x-3)(x+3)}-\frac{(x-3)(x-3)}{(x+3)(x-3)}$
[/mm]
Das ergibt dann:
[mm] $\frac{12x}{x^2-9}$
[/mm]
Ist also nicht das, was du da hast, vielleicht hast du die 1 von der 12 unterschlagen?
Dieser Term ist nicht definiert, wenn der Nenner den Wert 0 annimmt. Wann ist das der Fall? Nun, wenn [mm] $x^2-9=0$. [/mm] Das wirst du sicherlich alleine hinkriegen.
Also, den Rest musst du schon selber machen.
Liebe Grüße
Seppel
|
|
|
|