www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - konv. reelle Folge, Nullfolge
konv. reelle Folge, Nullfolge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konv. reelle Folge, Nullfolge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:28 Fr 30.12.2005
Autor: Doreen

Aufgabe
Zeigen Sie: Ist [mm] (u_{n})_{n \in \IN} [/mm] eine konvergente reelle Folge, so gilt:

[mm] \limes_{n\rightarrow\infty} \bruch{u_{1} + ...... + u_{n}}{n} [/mm] =  [mm] \limes_{n\rightarrow\infty} u_{n}. [/mm]

Bezeichne den Grenzwert mit u und zeige, dass

[mm] \bruch{(u_{1} - u) + ..... +(u_{n} - u)}{n} [/mm] eine Nullfolge bildet.

Zerlege dabei die Summe im Zähler mit einem geeigneten N so:

[mm] \underbrace{(u_{1} - u) + .... + (u_{N-1} - u)} [/mm]  +   [mm] \underbrace{( u_{N} - u) + .... + (u_{n} - u)} [/mm] .

Hallo...

jetzt habe ich noch eine für mich unverständliche Aufgabe...
die anderen waren wenigstens etwas nachvollziehbar aber diese hier...

Ich weiß nicht wo ich anfangen soll, geschweige denn wie...

Wäre super, wenn mir jemand etwas Licht in diese Aufgabe bringen könnte.

Vielen tausend Dank im Voraus.
Gruß
Doreen

Diese Frage habe ich in keinen anderem Forum gestellt

        
Bezug
konv. reelle Folge, Nullfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Fr 30.12.2005
Autor: felixf

Hallo Doreen!

> Zeigen Sie: Ist [mm](u_{n})_{n \in \IN}[/mm] eine konvergente reelle
> Folge, so gilt:
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{u_{1} + ...... + u_{n}}{n}[/mm]
> =  [mm]\limes_{n\rightarrow\infty} u_{n}.[/mm]
>  
> Bezeichne den Grenzwert mit u und zeige, dass
>  
> [mm]\bruch{(u_{1} - u) + ..... +(u_{n} - u)}{n}[/mm] eine Nullfolge
> bildet.
>  
> Zerlege dabei die Summe im Zähler mit einem geeigneten N
> so:
>  
> [mm]\underbrace{(u_{1} - u) + .... + (u_{N-1} - u)}[/mm]  +  
> [mm]\underbrace{( u_{N} - u) + .... + (u_{n} - u)}[/mm] .
>  Hallo...
>  
> jetzt habe ich noch eine für mich unverständliche
> Aufgabe...
>  die anderen waren wenigstens etwas nachvollziehbar aber
> diese hier...
>  
> Ich weiß nicht wo ich anfangen soll, geschweige denn
> wie...
>  
> Wäre super, wenn mir jemand etwas Licht in diese Aufgabe
> bringen könnte.

Ich versuchs mal.

Du willst zeigen, dass [mm] $a_n [/mm] := [mm] \frac{(u_1 - u) + \dots + (u_n - u)}{n}$, [/mm] $n [mm] \in \IN$ [/mm] eine Nullfolge ist. (Ist dir klar, warum das zur Loesung der Aufgabe fuehrt?)

Da [mm] $\lim_{n\to\infty} u_n [/mm] = u$ ist gibt es also zu jedem [mm] $\varepsilon [/mm] > 0$ ein $N [mm] \in \IN$ [/mm] so, dass [mm] $|u_n [/mm] - u| < [mm] \varepsilon$ [/mm] ist fuer alle $n [mm] \ge [/mm] N$. Damit ist insbesondere [mm] $\left|\frac{(u_{N+1} - u) + \dots + (u_n - u)}{n}\right| [/mm] < [mm] \frac{1}{n} \cdot [/mm] n [mm] \varepsilon [/mm] = [mm] \varepsilon$ [/mm] fuer alle $n > N$.

So. Und [mm] $\left|\frac{(u_1 - u) + \dots + (u_N - u)}{n}\right| [/mm] < [mm] \frac{N M}{n}$, [/mm] wobei $M > [mm] \sup_{n\in\IN} |u_n [/mm] - u|$ ist (warum gibt es so ein $M [mm] \in \IR$, [/mm] bzw. aequivalent, warum ist das Supremum $< [mm] \infty$?). [/mm]

Jetzt musst du das beides zusammenwuerfeln. Wenn $n$ gross genug ist, dann ist [mm] $\varepsilon [/mm] + [mm] \frac{N M}{n}$ [/mm] kleiner als $2 [mm] \varepsilon$. [/mm] Und was bedeutet dies?

LG & HTH, Felix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de