www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - konvergente Funktionenfolge
konvergente Funktionenfolge < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergente Funktionenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Di 30.03.2010
Autor: lebesgue

Aufgabe
Sei [mm] (f_{n})_{n \in \IN} [/mm] eine Folge messbarer Funktionen [mm] f_{n} [/mm] : [0,1] [mm] \to \IR. [/mm]
Ist es möglich, dass [mm] f_{n} \to [/mm] 0 punktweise in [0,1], [mm] sup_{n \in \IN} \parallel f_{n} \parallel_{\infty} [/mm] = 10 und [mm] \integral_{0}^{1}{|f_{n}(x)| dx}=1 [/mm] für alle n ?
(mit der unendlichkeitsnorm ist hier das wesentliche supremum des Betrages von f gemeint)

Ich habe zuerst versucht mir eine Funktion zu suchen , die diese Anforderungen erfüllt.
Wenn ich jetzt die Funktion [mm] f_{n} [/mm] betrachte, für die [mm] \parallel f_{n} \parallel_{\infty} [/mm] = 10 gilt, dann müsste [mm] f_{n}\le [/mm] 10 fast überall gelten.
Das bedeutet aber das [mm] f_{n}(x)= [/mm] 10 auf mehr als einer Nullmenge gilt.
Damit das Integral nun 1 für alle n [mm] \in \IN [/mm] ist müsste die Funktion meiner Meinung nach aber entweder unabhängig von n sein oder etwas in der Art [mm] f_{n}=\bruch{n}{2} [/mm] sin(nx) sein, wobei ich dann aber probleme mit dem supremum bekomme.
Mir fällt kein anderer Weg ein, wie ich die Aufgabe angehen kann und mir scheint ich komme über meinen Ansatz nicht weiter. Fällt euch was dazu ein.

MfG

p.s. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
konvergente Funktionenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Di 30.03.2010
Autor: Doing

Hallo!

Eine Folge mit diesen Eigenschaften existiert nicht. Den Beweis hierzu kannst du führen indem du mithilfe des Satzes von Lebesgue (Satz von der majorisierten Konvergenz) zu einem Widerspruch gelangst.

Gruß,
Doing

Bezug
                
Bezug
konvergente Funktionenfolge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Mi 31.03.2010
Autor: lebesgue

Danke für den Tipp.
Ich hab den Wink mit dem Zaunpfahl nicht mitbekommen... in der Aufgabenstellung ist ja schon eine tolle, integrierbare Majorante gegeben...
Hatte es zuvor mit der monotonen Konvergenz versucht, aber dadurch konnte ich nur zeigen, dass das für monotone Funktionenfolgen nicht möglich ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de