www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - konvergenz bestimmen
konvergenz bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz bestimmen: Erklärung
Status: (Frage) beantwortet Status 
Datum: 19:54 Fr 25.01.2008
Autor: howtoadd

Aufgabe
Man berechne:
[mm] \summe_{n=1}^{\infty} \bruch{5^n + (-3^n)}{7^n} [/mm]

hallo an alle,

also die lösung soll sein:
[mm] \summe_{n=1}^{\infty} \bruch{5^n + (-3^n)}{7^n} [/mm] = [mm] \summe_{n=1}^{\infty} \bruch{5}{7}^n [/mm] + [mm] \summe_{n=1}^{\infty} \bruch{-3}{7}^n [/mm]

hoch n gilt für nenner und zähler, habs nicht hinbekommen. So, bis hierhin verstehe es.

aber dann im nächsten Schritte taucht -2 hinter dem ganzen auf, woher kommt die???


[mm] \summe_{n=0}^{\infty}\bruch{5}{7}^n+\summe_{n=0}^{\infty}\bruch{-3}{7}^n [/mm] - 2

und das verstehe ich nicht!

dann gehts weiter mit der schreibweise:

= [mm] \bruch{1}{1- \bruch{5}{7}} [/mm] +  [mm] \bruch{1}{1+ \bruch{3}{7}} [/mm] -2

die schreibweise verstehe ich auch, mich stört halt diese -2.
als ergebnis kommt dann [mm] \bruch{11}{5} [/mm]

ich habe diese frage in keinem anderen forum gestellt.

und freue mich auf jede erklärung für die "geheimnisvolle 2" :-)

lieben gruß!


        
Bezug
konvergenz bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Fr 25.01.2008
Autor: Somebody


> Man berechne:
>  [mm]\summe_{n=1}^{\infty} \bruch{5^n + (-3^n)}{7^n}[/mm]
>  hallo an
> alle,
>
> also die lösung soll sein:
>  [mm]\summe_{n=1}^{\infty} \bruch{5^n + (-3^n)}{7^n}[/mm] =
> [mm]\summe_{\red{n=1}}^{\infty} \left(\bruch{5}{7}\right)^n + \summe_{\red{n=1}}^{\infty} \left(\bruch{-3}{7}\right)^n[/mm]
>
> So, bis hierhin verstehe es.
>  
> aber dann im nächsten Schritte taucht -2 hinter dem ganzen
> auf, woher kommt die???

>

> [mm]\summe_{\red{n=0}}^{\infty}\left(\bruch{5}{7}\right)^n+\summe_{\red{n=0}}^{\infty}\bruch{-3}{7}^n - 2[/mm]
>  
> und das verstehe ich nicht!

Der Anfang der Summation ist von $n=1$ auf $n=0$ geändert worden. Damit sich der Wert des Gesamtausdruckts nicht ändert, müssen deshalb die beiden deswegen dazugenommenen Terme [mm] $\left(\bruch{5}{7}\right)^0$ [/mm] und [mm] $\left(\bruch{-3}{7}\right)^0$, [/mm] die beiden den Wert $1$ haben, subtrahiert werden.



Bezug
                
Bezug
konvergenz bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Fr 25.01.2008
Autor: howtoadd

ok, aber wieso wurde das dann überhaupt geändert, hätte man es nicht bei n= 1 lassen können? :-//

also, ich hab nicht den sinn darin verstanden..

also, muss ich das bei so einer rechnung immer so machen?



Bezug
                        
Bezug
konvergenz bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Fr 25.01.2008
Autor: Somebody


> ok, aber wieso wurde das dann überhaupt geändert, hätte man
> es nicht bei n= 1 lassen können? :-//

Nein, falls man den Wert der "geometrischen Reihe" in der Form [mm] $\sum^\infty_{\red{n=0}}q^n=\frac{1}{1-q}$ [/mm] gelernt hat. Dieses Manöver war also nur nötig, um die beiden unendlichen Summen auf eine Form zu bringen, die dieser exakten Form der geometrischen Reihe entspricht. Natürlich hätte man auch so überlegen können: [mm] $\sum^\infty_{\red{n=1}} q^n=q\cdot\sum^\infty_{\red{n=1}} q^{n-1}=q\cdot\sum^\infty_{\red{n=0}} q^n=q\cdot\frac{1}{1-q}$. [/mm]

> also, ich hab nicht den sinn darin verstanden..
>  
> also, muss ich das bei so einer rechnung immer so machen?

Wenn Du die Formel für die Summe der geometrischen Reihe in der Form [mm] $\sum^\infty_{\red{n=0}} q^n=\frac{1}{1-q}$ [/mm] anwenden willst, selbstveständlich schon.

Bezug
                        
Bezug
konvergenz bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Fr 25.01.2008
Autor: Marcel

Hallo,

hier kann man so rechnen, wie es somebody getan hat, aber es geht natürlich auch so:
Man beachte, dass für $|z|<1$ alle im folgenden auftretenden Reihen konvergieren:
Es gilt
[mm] $\sum_{k=0}^\infty z^k=\frac{1}{1-z}$ [/mm]

Also folgt (beachte, dass stets [mm] $z^0=1$): [/mm]
[mm] $1+\sum_{k=1}^\infty z^k=\frac{1}{1-z}$ [/mm]
[mm] $\gdw$ [/mm]
[mm] $(\*)$ $\sum_{k=1}^\infty z^k=\frac{1}{1-z}-1$ [/mm]

Im Endeffekt kann man dann auch noch testen, ob die Gleichung
[mm] $\frac{1}{1-z}-1=z*\frac{1}{1-z}$ [/mm]
wirklich stimmt, denn das Ergebnis linkerhand folgt aus meiner Rechnung für [mm] $\sum_{k=1}^\infty z^k$, [/mm] das rechterhand aus somebodys, aber das tut's dann auch. Nur, wenn Du Dir Deine Rechnung anguckst, dann siehst Du, dass meine "Herleitung" zweimal angewendet wurde, und daher steht da auch diese $-2$, die man mittels [mm] $(\*)$ [/mm] sofort erklären kann.

Z.B. gilt nach [mm] $(\*)$ [/mm]
[mm] $\sum_{n=1}^\infty \left(\frac{5}{7}\right)^n=\frac{1}{1-\frac{5}{7}}-1$ [/mm]

Und analoges erhälst Du für die andere Reihe, wenn man die beiden Reihen dann addiert, so addiert man dabei also auch $-1+(-1)=-2$

P.S.:
Allgemein beachte einfach den folgenden Trick:
[mm] $\sum_{n=0}^\infty a_n$ [/mm] sei eine in [mm] $\IR$ [/mm] konvergente Reihe, es sei [mm] $\underbrace{A}_{\in \IR}=\sum_{n=0}^\infty a_n$ [/mm] der Wert der Reihe (beachte: $A [mm] \not= \pm \infty$). [/mm]
Dann gilt für jedes $N [mm] \in \IN_0$: [/mm]
[mm] $\sum_{n=0}^\infty a_n=\sum_{n=0}^N a_n+\sum_{n=N+1}^\infty a_n$, [/mm] d.h.:
[mm] $\sum_{n=N+1}^\infty a_n=\sum_{n=0}^\infty a_n -\sum_{n=0}^N a_n=A-\sum_{n=0}^N a_n$ [/mm]

Gruß,
Marcel

Bezug
                                
Bezug
konvergenz bestimmen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:06 Fr 25.01.2008
Autor: howtoadd

ok, dankeschön für die beiden erklärungen, jetzt kann ich das nachvollziehen :-)

dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de