www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - konvergenz polynom
konvergenz polynom < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Mi 26.05.2010
Autor: snoopy89

Aufgabe
Diskutieren Sie die Konvergenz der Folge ( [mm] \wurzel[n]{|P(n)|})_{n\in \IN}, [/mm] wobei

P(x) = [mm] \summe_{k=0}^{m}a_{k}x^{k} [/mm]

ein reelles Polynom ist. Nutzen Sie hierfür aus, dass [mm] \limes_{n\rightarrow\infty}\wurzel[n]{n}=1 [/mm] ist, und schätzen Sie [mm] |\summe_{k=0}^{m-1}a_{k}n^{k}| [/mm] ab.

also ich habe die abschätzung schon gemacht. ich kam dann auf
[mm] |\summe_{k=0}^{m-1}a_{k}n^{k}| \le |a|mn^{m-1} [/mm] , wobei [mm] a=max_{k=1,...,n} a_{k} [/mm] ist. diese abschätzung scheint laut meinem tutor auch richtig zu sein und muss hier nicht weiter diskutiert werden.

so dann weiß ich, dass ich [mm] \wurzel[n]{|P(n)|} [/mm] durch eine folge nach unten und eine folge nach oben abschätzen muss, die beide konvergieren. dann konvergiert [mm] \wurzel[n]{|P(n)|} [/mm] laut sandwichtheorie (oder wie man die auch richtig nennen mag) ebenso.

meine abschätzung nach unten:

[mm] |P(n)|=|n^{m}+\summe_{k=0}^{m-1}a_{k}n^{k}| \ge |n^{m}|-|\summe_{k=0}^{m-1}a_{k}n^{k}| \ge n^{m}-|a|mn^{m-1} [/mm] = [mm] n^{m-1}(n-|a|m) \ge 2n^{m-1} [/mm]

das letzte ungleichzeichen hat mir mein tutor gesagt, jedoch weiß ich nicht wie es zustande kommt. er hat noch gesagt, dass n>|a|m+1 wäre, aber ich verstehe es nicht. kann mir da jemand helfen?

und wenn ich dann zeigen will, dass [mm] \wurzel[n]{2n^{m-1}} [/mm] wirklich konvergiert, muss ich doch den limes davon bilden, oder?
also [mm] \limes_{n\rightarrow\infty}\wurzel[n]{2n^{m-1}} [/mm] = [mm] \limes_{n\rightarrow\infty}\wurzel[n]{2}\wurzel[n]{n^{m-1}} [/mm]  = [mm] \limes_{n\rightarrow\infty}\wurzel[n]{2}(\wurzel[n]{n})^{m-1} [/mm] = 1
und damit konvergiert die folge.

geht das so? vielen dank schonmal für die hilfe!

        
Bezug
konvergenz polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mi 26.05.2010
Autor: leduart

Hallo
a und m sind fest, n geht gegen unendlich, du musst nur sagen, dass es ein N gibt so dass für alle n>N gilt n>2am (das gilt sicher nicht für alle n. aber für die ersten paar Millionen n ist das doch sowieso endlich!
Gruss leduart

Bezug
                
Bezug
konvergenz polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Mi 26.05.2010
Autor: snoopy89

hmm... ich verstehe nicht ganz, warum du n>2am nimmst. wieso sollte das dann bedeuten, dass [mm] n^{m-1}(n-|a|m) \ge 2n^{m-1} [/mm] gilt?

Bezug
                        
Bezug
konvergenz polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mi 26.05.2010
Autor: Gonozal_IX


> hmm... ich verstehe nicht ganz, warum du n>2am nimmst.
> wieso sollte das dann bedeuten, dass [mm]n^{m-1}(n-|a|m) \ge 2n^{m-1}[/mm]
> gilt?

Ok, schauen wir uns die Ungleichung doch mal an, da steht:

[mm] $n^{m-1}(n-|a|m) \ge 2n^{m-1}$ [/mm] offensichtlich gilt das [mm] \gdw [/mm]
$(n-|a|m) [mm] \ge [/mm] 2$

Naja, dass das für ausreichend große n gilt ist doch hoffentlich klar?
Egal wie groß du a und m wählst, ab [mm] $n_0 [/mm] = |a|m + 2$ gilt die Ungleichung für alle n.

MFG,
Gono.


Bezug
                                
Bezug
konvergenz polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Do 27.05.2010
Autor: Larissa89

Hallo, ich bin an der gleichen Aufgabe dran wie snoopy, bekomme aber meine "obere" Folge nicht hin, s.d. unsere Folge |P(n)| ^ 1/n [mm] \le [/mm] ist.

Angefangen habe ich wie bei der unteren Abschätzung, aber beim Auseinanderziehen der Betragsstriche, habe ich mit der Addition arbeiten müssen, damit [mm] \le [/mm] gilt.Nur komme ich dann nicht sinnvoll weiter!?


Bezug
                                        
Bezug
konvergenz polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Do 27.05.2010
Autor: fred97

Sei a wie bei snoopy.

Für n [mm] \in \IN [/mm] ist dann:

$|P(n)| [mm] \le \summe_{k=0}^{m}|a_k|*n^k \le a*\summe_{k=0}^{m}n^m =a*(m+1)*n^m$ [/mm]

FRED

Bezug
                                                
Bezug
konvergenz polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Do 27.05.2010
Autor: Larissa89

Vielen Dank.
Bestimme ich dann den Grenzwert so: Lim [mm] (n^m [/mm] * (m+1)) ^1/n für n--> unendl.
?

Bezug
                                                        
Bezug
konvergenz polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Do 27.05.2010
Autor: fred97

Es ist $ [mm] \wurzel[n]{a\cdot{}(m+1)\cdot{}n^m}= \wurzel[n]{a(m+1)}*(\wurzel[n]{n})^m \to [/mm] 1$ für n [mm] \to \infty [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de