www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - konvergenz von reihen
konvergenz von reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz von reihen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:12 Fr 26.10.2007
Autor: schlumpfinchen123

Aufgabe
Untersuchen Sie, ob die Folge [mm] (a_{n}) [/mm] mit [mm] a_{n} [/mm] := [mm] \bruch{n^{n}}{n!} [/mm] beschränkt ist.

Hallo,

kann mir vielleicht jemand einen Tipp geben, wie ich diese Aufgabe berechnen muß. Komme damit nicht zurecht würde sie aber gerne verstehen!?

Bin für jede Hilfe dankbar!

Gruß Anna!

        
Bezug
konvergenz von reihen: Konvergenz zeigen
Status: (Antwort) fertig Status 
Datum: 16:27 Fr 26.10.2007
Autor: Loddar

Hallo Anna!


Was hat denn diese Aufgaben mit "Reihen" zu tun? Oder ist hier [mm] $\summe_{n=1}^{\infty}\bruch{n^n}{n!}$ [/mm] zu untersuchen?


Um den Nachweis der Beschränktheit für die Folge [mm] $a_n [/mm] \ := \ [mm] \bruch{n^n}{n!}$ [/mm] zu führen, zerlegen wir den Bruch wie folgt und wenden anschließend die Grenzwertsätze an:

[mm] $$a_n [/mm] \ := \ [mm] \bruch{n^n}{n!} [/mm] \ = \ [mm] \bruch{\overbrace{n*n*n*...*n}^{= \ n \ \text{Faktoren}}}{\underbrace{1*2*3*...*n}_{= \ n \ \text{Faktoren}}} [/mm] \ = \ [mm] \underbrace{\bruch{n}{1}*\bruch{n}{2}*\bruch{n}{3}*...*\bruch{n}{n}}_{= \ n \ \text{Faktoren}}$$ [/mm]
Wie lautet hier der "Grenzwert" dieser Folge?


Gruß
Loddar


Bezug
                
Bezug
konvergenz von reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Fr 26.10.2007
Autor: schlumpfinchen123

Hallo loddar,

nein in der Aufgabe geht es um Folgen. ich habe mich bei der Überschrift vertan. Wollte es noch korrigieren, ging aber nicht mehr oder ich wußte jedenfalls nicht wie man das macht.

Gruß!

Bezug
                
Bezug
konvergenz von reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Fr 26.10.2007
Autor: schlumpfinchen123

Hallo,

ich würde sagen der Grenzwert dieser Folge ist 0. Oder liege ich das falsch?

Gruß Anna

Bezug
                        
Bezug
konvergenz von reihen: Gegenfrage
Status: (Antwort) fertig Status 
Datum: 16:38 Fr 26.10.2007
Autor: Loddar

Hallo Anna!


Gegen welchen "Wert" strebt denn der erste Teilbruch und der zweite, und gegen welchen Wert der letzte?

Was ergibt sich damit für den Gesamt-"Grenzwert"?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de