www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - konvergenzradius
konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Mi 12.03.2008
Autor: eumel

Aufgabe
bestimmen sie die konvergenzradien folgender reihen:

[mm] \summe_{i=0}^{\infty} 3^{n+1}x^{2n} [/mm]

[mm] \summe_{i=0}^{\infty} 3^{n+1}x^{n^{2}} [/mm]

[mm] \summe_{i=0}^{\infty} \wurzel{n}^{n} x^{n} [/mm]

[mm] \summe_{i=0}^{\infty} \bruch{x^{n}}{a^{n} + b^{n}} [/mm] , a,b [mm] \in [/mm] |R

hi ^^
also ich hab probleme mit den potenzreihen da ich net weiß wie man vorgeht, wenn man KEIN [mm] x^n [/mm] dort stehen hat :-|
kann mir da jemand erklären wie man damit dann rechnet?
danke und gruß ^^

eumel

        
Bezug
konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Mi 12.03.2008
Autor: angela.h.b.


> bestimmen sie die konvergenzradien folgender reihen:
>  
> [mm]\summe_{i=0}^{\infty} 3^{n+1}x^{2n}[/mm]
>  
> [mm]\summe_{i=0}^{\infty} 3^{n+1}x^{n^{2}}[/mm]
>  
> [mm]\summe_{i=0}^{\infty} \wurzel{n}^{n} x^{n}[/mm]
>  
> [mm]\summe_{i=0}^{\infty} \bruch{x^{n}}{a^{n} + b^{n}}[/mm] , a,b
> [mm]\in[/mm] |R
>  hi ^^
>  also ich hab probleme mit den potenzreihen da ich net weiß
> wie man vorgeht, wenn man KEIN [mm]x^n[/mm] dort stehen hat :-|
>  kann mir da jemand erklären wie man damit dann rechnet?

Hallo,

ich bin mir nicht sicher, ob ich Dein Problen richtig verstehe.

Meinst Du z.B. die erste Aufgabe, weil Du da nicht [mm] x^n [/mm] sondern [mm] x^{2n} [/mm] hast?

Hier ist, wenn wir die Potenzreihe als [mm] \summe a_nx^n [/mm] schreiben,
[mm] a_n:=3^{\bruch{n}{2}+1} [/mm] für gerades n,
[mm] a_n:= [/mm] 0 für ungerades n.

Das bedeutet, daß Du den []Konvergenzradius nicht mit
    [mm] r=\lim_{n\rightarrow\infty} \bigg| \frac{a_n}{a_{n+1}} \bigg| [/mm]  berechnen kannst.

Helfen tut Dir aber die Formel v. Cauchy-Hadamard:     [mm] r=\frac{1}{\limsup\limits_{n\rightarrow\infty}\left(\sqrt[n]{|a_n|}\right)}. [/mm]

Berechne [mm] \limsup\limits_{n\rightarrow\infty}\left(\sqrt[n]{|a_n|}\right) [/mm] und bilde den Kehrwert.

Gruß v. Angela

Bezug
                
Bezug
konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Mi 12.03.2008
Autor: eumel

auf diese hilfe hätte ich jetz verzichten können, wo die theorie steht weiß ich, mich irritiert nur dass dort kein [mm] x^n [/mm] steht sondern was anderes ^^

ich möcht einfach nur wissen wie man die konvergenzradien berechnet, wenn reihen solch eine form haben:

[mm] \summe_{i=0}^{\infty} a_{n} x^{2n} [/mm]
[mm] \summe_{i=0}^{\infty} a_{n} x^{n^{2}} [/mm]

und eben nicht:
[mm] \summe_{i=0}^{\infty} a_{n} x^{x}, [/mm] das is pille palle^^

und eben anhand den beispielen was dort rauskommt

Bezug
                        
Bezug
konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:58 Do 13.03.2008
Autor: angela.h.b.


> auf diese hilfe hätte ich jetz verzichten können, wo die
> theorie steht weiß ich, mich irritiert nur dass dort kein
> [mm]x^n[/mm] steht sondern was anderes ^^

  

> ich möcht einfach nur wissen wie man die konvergenzradien
> berechnet, wenn reihen solch eine form haben:
>  
> [mm]\summe_{i=0}^{\infty} a_{n} x^{2n}[/mm]
>  [mm]\summe_{i=0}^{\infty} a_{n} x^{n^{2}}[/mm]
>  
> und eben nicht:
> [mm]\summe_{i=0}^{\infty} a_{n} x^{x},[/mm] das is pille palle^^

Hallo,

ich hatte eigentlich versucht, Dir genau das in meinem Post zu erklären, allerdings hatte ich zugegebenermaßen ein Fehlerchen eingebaut, welches jetzt beseitigt ist.

Vielleicht liest Du's nochmal gründlich.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de