www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - konvergenzradius
konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Do 01.10.2009
Autor: katjap

Aufgabe
Bestimmen SIe den KOnvergenzradiu der Potenzreihe

[mm] \summe_{}^{} \bruch{-1^{n}}{n!} [/mm] * [mm] (\bruch{n}{e})^{n} x^{n} [/mm]

Hallo!

Ich komme hier irgendwie bei der Lösung nicht weiter.

Ich dachte ich wende folgendes für den Konvergenzradius an:

r= [mm] \bruch{1}{\limes_{n\rightarrow\infty}} \wurzel[n]{a_n} [/mm]

leider komme ich damit nicht weiter, denn das ergibt:

= [mm] \bruch{1}{\limes_{n\rightarrow\infty}} [/mm] -1* [mm] \bruch{n}{e} *\wurzel[n]{\bruch{1}{n!}} [/mm]

kann mir jemand weiterhelfen, was ihc nun tun muss,
oder ob ich doch eher die andere methode verwenden soll?

danke!

        
Bezug
konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Do 01.10.2009
Autor: Al-Chwarizmi


> Bestimmen SIe den KOnvergenzradiu der Potenzreihe
>  
> [mm]\summe_{}^{} \bruch{-1^{n}}{n!}[/mm] * [mm](\bruch{n}{e})^{n}\,\red{ x_n}[/mm]


Was ist denn da noch dieses [mm] x_n [/mm] ??


Bezug
                
Bezug
konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:04 Do 01.10.2009
Autor: katjap

na das ist in der aufgabe nicht näher definiert.
aber dachte auch, dass potenzreihen definiert sind als:

[mm] \summe_{}^{} a_n [/mm] * [mm] x^{n} [/mm]

ahh ich seh grad, hab mich da vertippt, das heisst nicht [mm] x_n [/mm] sondern [mm] x^{n} [/mm]

sorry!

Bezug
        
Bezug
konvergenzradius: Hinweise
Status: (Antwort) fertig Status 
Datum: 14:49 Do 01.10.2009
Autor: Roadrunner

Hallo Katja!


Zum einen verschwindet der Faktor $(-1)_$ aus dem Term für den Konvergenzradius, da dort auch Betragsstriche stehen.



Für eine weitere Abschätzung kannst Du nun z.B. die []Stirling-Formel anwenden mit:
$$n! \ [mm] \approx [/mm] \ [mm] \wurzel{2\pi n}*\left(\bruch{n}{e}\right)^n$$ [/mm]

Oder Du verwendest für den []Konvergenzradius die alternative Formel, welche an das Quotientenkriterium angelehnt ist.


Gruß vom
Roadrunner


Bezug
                
Bezug
konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Do 01.10.2009
Autor: katjap

die abschätzung kenne ich so nicht, daher glaube ich nicht dass ich sie verwenden darf,

wenn ich das an das quotientenkriterium angelehnte verfahren nehme,
dann komme ich allerdings auch nicht weiter, denn so lande ich bei:

r= [mm] \limes_{n\rightarrow\infty}| [/mm] (n+1) * [mm] \bruch{(\bruch{n}{e})^{n}}{(\bruch{n+1}{e})^{n+1}}| [/mm]

und damit komme ich auhc nicht weiter,
steckt irgendwo ein fehler, oder hat mirjemand einen weiteren tip?

danke!

Bezug
                        
Bezug
konvergenzradius: umformen
Status: (Antwort) fertig Status 
Datum: 15:13 Do 01.10.2009
Autor: Roadrunner

Hallo Katja!


Du kannst hier noch etwas mit Bruchrechnung und MBPotenzgesetzen zusammenfassen:

$$(n+1) * [mm] \bruch{\left(\bruch{n}{e}\right)^{n}}{\left(\bruch{n+1}{e}\right)^{n+1}} [/mm] \ = \ (n+1) * [mm] \bruch{\bruch{n^n}{e^n}}{\bruch{(n+1)^{n+1}}{e^{n+1}}} [/mm] \ = \ [mm] e*\bruch{n^n}{(n+1)^n} [/mm] \ = \ ...$$

Versuche nun den Bruch zu einer Folge mit bekanntem Grenzwert umzuformen.


Gruß vom
Roadrunner


Bezug
                                
Bezug
konvergenzradius: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 Do 01.10.2009
Autor: katjap

danke, bin nun drauf gekommen.

umformen ergab nun:

[mm] \limes_{n\rightarrow\infty} e*(\bruch{1}{1+\bruch{1}{n}})^{n} [/mm] = e* [mm] \bruch{1}{e} [/mm] = 1


:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de