www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - konvexe wahrscheinlichkeitsmaß
konvexe wahrscheinlichkeitsmaß < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexe wahrscheinlichkeitsmaß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:43 Mi 10.07.2013
Autor: Mapunzel

Aufgabe
Sei [mm] $\mathcal{P}$ [/mm] die Menge aller Wahrscheinlichkeitsmaße auf einem Messraum [mm] $\left(\Omega , \mathcal{A}\right)$. [/mm]
(a) Zeigen sie dass [mm] $\mathcal{P}$ [/mm] konvex ist.
(b) Sei [mm] $\Omega$ [/mm] abzählbar. Beschreiben sie die Extremalpunkte von [mm] $\mathcal{P}$ [/mm] und zeigen sie, dass sich jedes [mm] $P\in\mathcal{P} [/mm] $ darstellen lässt als:
$$P = [mm] \sum_{i=1}^{\infty} \alpha_{i}P_i$$ [/mm]
mit [mm] $\alpha_i \ge [/mm] 0 $, [mm] $\sum_{i=1}^{\infty} \alpha_{i} [/mm] = 1$,  [mm] $P_i$ [/mm] extremal.

Hey, ich bin mir nicht sicher ob ich die Aufgabe korrekt gelöst habe und hoffe auf Verbesserungsvorschläge.

Also zu (a):

Ich nehme einfach zwei Maße aus [mm] \mathcal{P} [/mm] und zeige, dass
$P = [mm] \lambda P_p +(1-\lambda)P_q$ [/mm] für [mm] $\lambda\in\left[ 0,1\right]$ [/mm] wieder ein Wmaß ist.
Also [mm] $P(\Omega)=1$ [/mm] und [mm] $P\left(\cup_n A_n\right) [/mm] = [mm] \sum_n P\left(A_n\right)$ [/mm] für $ (An)$ p.d., das hab ich durchgerechnet, glaube nicht dass es da Probleme gibt auf die ich nicht geachtet hab.

zu (b):
Ich nehme an die Extremalpunkte sind:
Sei [mm] $A\in\mathcal{A}$ P_i [/mm] (A) [mm] =\begin{cases} 1, & \text{wenn }\omega_i\in A \\ 0, & \text{ sonst} \end{cases} [/mm]

Da [mm] $\Omega$ [/mm] abzählbar ist kann man die Elemente ja einfach durchnummerieren. Wenn jetzt p die Zähldichte ist, dann ist  doch [mm] $P(\Omega)= \sum_{\omega\in\Omega} p(\omega)= \sum_{i=1}^{\infty} p(\omega_i) [/mm] = 1$ also können wir sagen [mm] $p(\omega_i)= \alpha_i$ [/mm] und dann ist
$P(A) = [mm] \sum_{i=1}^{\infty} \alpha_i P_i [/mm] (A) = [mm] \sum_{\omega\in\mathcall{A}} \alpha_{\omega}$ [/mm]

So dass sind so grob meine Gedanken zu dem ganzen, würde mich freuen wenn einer noch schnell ein paar Sachen dazu sagen kann, vielen Dank für die Mühe schonmal im vorraus!!



        
Bezug
konvexe wahrscheinlichkeitsmaß: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Do 11.07.2013
Autor: felixf

Moin!

> Sei [mm]\mathcal{P}[/mm] die Menge aller Wahrscheinlichkeitsmaße
> auf einem Messraum [mm]\left(\Omega , \mathcal{A}\right)[/mm].
>  (a)
> Zeigen sie dass [mm]\mathcal{P}[/mm] konvex ist.
>  (b) Sei [mm]\Omega[/mm] abzählbar. Beschreiben sie die
> Extremalpunkte von [mm]\mathcal{P}[/mm] und zeigen sie, dass sich
> jedes [mm]P\in\mathcal{P}[/mm] darstellen lässt als:
>  [mm]P = \sum_{i=1}^{\infty} \alpha_{i}P_i[/mm]
>  mit [mm]\alpha_i \ge 0 [/mm],
> [mm]\sum_{i=1}^{\infty} \alpha_{i} = 1[/mm],  [mm]P_i[/mm] extremal.
>
>  Hey, ich bin mir nicht sicher ob ich die Aufgabe korrekt
> gelöst habe und hoffe auf Verbesserungsvorschläge.
>  
> Also zu (a):
>
> Ich nehme einfach zwei Maße aus [mm]\mathcal{P}[/mm] und zeige,
> dass
>  [mm]P = \lambda P_p +(1-\lambda)P_q[/mm] für [mm]\lambda\in\left[ 0,1\right][/mm]
> wieder ein Wmaß ist.
>  Also [mm]P(\Omega)=1[/mm] und [mm]P\left(\cup_n A_n\right) = \sum_n P\left(A_n\right)[/mm]
> für [mm](An)[/mm] p.d., das hab ich durchgerechnet, glaube nicht
> dass es da Probleme gibt auf die ich nicht geachtet hab.

Ja, das sollte ohne Probleme gehen.

> zu (b):
> Ich nehme an die Extremalpunkte sind:
>  Sei [mm]A\in\mathcal{A}[/mm] [mm]P_i[/mm] (A) [mm]=\begin{cases} 1, & \text{wenn }\omega_i\in A \\ 0, & \text{ sonst} \end{cases}[/mm]

Genau. Ich vermute jetzt aber, dass du das auch noch beweisen sollst :)

> Da [mm]\Omega[/mm] abzählbar ist kann man die Elemente ja einfach
> durchnummerieren. Wenn jetzt p die Zähldichte ist, dann
> ist  doch [mm]P(\Omega)= \sum_{\omega\in\Omega} p(\omega)= \sum_{i=1}^{\infty} p(\omega_i) = 1[/mm]
> also können wir sagen [mm]p(\omega_i)= \alpha_i[/mm] und dann ist
> [mm]P(A) = \sum_{i=1}^{\infty} \alpha_i P_i (A) = \sum_{\omega\in\mathcall{A}} \alpha_{\omega}[/mm]

Genau.

LG Felix


Bezug
                
Bezug
konvexe wahrscheinlichkeitsmaß: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:23 Fr 12.07.2013
Autor: Mapunzel

danke für das Bestätigen meiner Überlegungen :)
War auch alles soweit richtig, hab mit unserem Assistenten darüber geredet. Zu Zeigen dass das Diracmaß Extremalpunkte sind hab ich auch noch geschafft aber hatte Probleme damit zu zeigen, dass das wirklich alle sind. Aber jetzt ist alles klar!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de