www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - kubische Gleichung
kubische Gleichung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kubische Gleichung: Idee
Status: (Frage) beantwortet Status 
Datum: 13:21 Mo 09.05.2011
Autor: ella87

Aufgabe
Stellen Sie zu einer gegebenen kubischen Gleichung [mm] x^3 +ax^2 +bx +c =0[/mm] diejenige kubische Gleichung auf, welche als Lösung die Quadrate der vorgegebenen Gleichung besitzt.

kann ich die Aufgabe mit Hilfe der Lagrang´schen Interpolationsformel lösen?

ich habe die kubische Gleichung [mm] f(x)= x^3 +ax^2 +bx +c [/mm] mit den Lösungen [mm]x_1 , x_2 , x_3 [/mm] (Polynom 3. Graden hat höchstens 3 Nullstellen in [mm]\IR [/mm] )

und suche ein Polynom 3. Graden mit der Eigenschaft [mm]P_3 (x_i ^2 ) =0 [/mm] für [mm]i= 1,2,3 [/mm]

also brauche ich noch eine Hilfsfunktion [mm]h(z) [/mm] mit [mm] h(x_i ^2) =0[/mm] für [mm] i=1,2,3 [/mm]
eine solche Funktion wäre
[mm] h(x) = (x_1 ^2 - x^2)(x_2 ^2 - x^2)(x_3 ^2 - x^2)[/mm]

dann ist
[mm] P_3 (x) = \summe_{j=1}^{3} h(x_j) g_j (x) [/mm]

mit [mm] g_j (x) = \produkt_{i=0, i \not= j}^{3}\bruch{x-x_i }{x_j -x_i } [/mm]  und  [mm] g_j (x_i ) = 0[/mm] für [mm]i \not= j [/mm] , [mm] g_j (x_j ) = 1[/mm] [mm]\forall j [/mm]

ein Polynom 3. Grades, also eine kubische Gleichung, mit der gewünschten Eigenschaft.
Oder nicht?

        
Bezug
kubische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mo 09.05.2011
Autor: reverend

Hallo ella,

da ist was faul.

> Stellen Sie zu einer gegebenen kubischen Gleichung [mm]x^3 +ax^2 +bx +c =0[/mm]
> diejenige kubische Gleichung auf, welche als Lösung die
> Quadrate der vorgegebenen Gleichung besitzt.
>  kann ich die Aufgabe mit Hilfe der Lagrang´schen
> Interpolationsformel lösen?
>  
> ich habe die kubische Gleichung [mm]f(x)= x^3 +ax^2 +bx +c[/mm] mit
> den Lösungen [mm]x_1 , x_2 , x_3[/mm] (Polynom 3. Graden hat
> höchstens 3 Nullstellen in [mm]\IR[/mm] )

[ok] - außer dass der Genitiv von "Grad" nicht Graden lautet, sondern Grades.

> und suche ein Polynom 3. Graden mit der Eigenschaft [mm]P_3 (x_i ^2 ) =0[/mm]
> für [mm]i= 1,2,3[/mm]
>  
> also brauche ich noch eine Hilfsfunktion [mm]h(z)[/mm] mit [mm]h(x_i ^2) =0[/mm]
> für [mm]i=1,2,3[/mm]
>  eine solche Funktion wäre
>  [mm]h(x) = (x_1 ^2 - x^2)(x_2 ^2 - x^2)(x_3 ^2 - x^2)[/mm]

Ich sehe nicht, wieso Du unbedingt eine Hilfsfunktion brauchst, aber egal. Die hier erfüllt Deine gesuchte Eigenschaft.

> dann ist
> [mm]P_3 (x) = \summe_{j=1}^{3} h(x_j) g_j (x)[/mm]

[mm] h(x_j)=0 [/mm] für alle j. [mm] \Rightarrow P_3(x)=0 [/mm] für alle x.

> mit [mm]g_j (x) = \produkt_{i=0, i \not= j}^{3}\bruch{x-x_i }{x_j -x_i }[/mm]
>  und  [mm]g_j (x_i ) = 0[/mm] für [mm]i \not= j[/mm] , [mm]g_j (x_j ) = 1[/mm]
> [mm]\forall j[/mm]
>  
> ein Polynom 3. Grades, also eine kubische Gleichung, mit
> der gewünschten Eigenschaft.

Nein. Siehe oben.

Probiers mal anders:
[mm] f(x)=x^3+ax^2+bx+c=(x-x_1)(x-x_2)(x-x_3) [/mm]

Hieraus kannst Du ja Beziehungen zwischen [mm] a,b,c,x_1,x_2,x_3 [/mm] herleiten.

Gesucht ist nun
[mm] g(x)=(x-x_1^2)(x-x_2^2)(x-x_3^2)=x^3+Ax^2+Bx+C [/mm]

Stelle A,B,C in Abhängigkeit von a,b,c dar.
Am einfachsten ist [mm] C=c^2. [/mm]

Den Rest überlasse ich erstmal Dir.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de