www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - kugeln ziehen
kugeln ziehen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kugeln ziehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Do 05.11.2009
Autor: Der_Marder

Aufgabe
In einer Urne befinden sich 9 weiße und 6 rote Kugeln. Berechnen Sie die Wahrscheinlichkeiten folgender Ereignisse:

(iv) Es werden zugleich 4 Kugeln gezogen, darunter sind genau 3 rote.
(v) Es werden zugleich 11 Kugeln gezogen, alle in der Urne verbleibenden Kugeln sind weiß.

So, bei diesen Aufgaben benutzt man ja die hypergeometrische Verteilung. Nun werden aber von beiden Farben Kugeln gezogen, was macht man in diesem Fall? Ich habe zuerst versucht zwei Ziehungen zu verbinden:
[mm] \bruch{\vektor{6 \\ 3}*\vektor{9 \\ 0}}{\vektor{15 \\ 3}} [/mm] * [mm] \bruch{\vektor{9 \\ 1}*\vektor{3 \\ 0}}{\vektor{12 \\ 1}} [/mm] = [mm] \bruch{3}{91} [/mm]

Wäre das richtig oder wird durch das Verbinden die Wahrscheinlichkeit verfälscht?

Dann habe ich noch versucht die roten Kugeln zu vernachlässigen:
[mm] \bruch{\vektor{6 \\ 3}*\vektor{14-6 \\ 3-3}}{\vektor{14 \\ 3}} [/mm] = 0,05

Nun habe ich zwei Ergebnisse und beide stimmen nicht mit dem überein, was ich beim Baumdiagramm raushabe. Was kann ich machen?


        
Bezug
kugeln ziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Do 05.11.2009
Autor: glie


> In einer Urne befinden sich 9 weiße und 6 rote Kugeln.
> Berechnen Sie die Wahrscheinlichkeiten folgender
> Ereignisse:
>  
> (iv) Es werden zugleich 4 Kugeln gezogen, darunter sind
> genau 3 rote.
>  (v) Es werden zugleich 11 Kugeln gezogen, alle in der Urne
> verbleibenden Kugeln sind weiß.
>  So, bei diesen Aufgaben benutzt man ja die
> hypergeometrische Verteilung. Nun werden aber von beiden
> Farben Kugeln gezogen, was macht man in diesem Fall? Ich
> habe zuerst versucht zwei Ziehungen zu verbinden:
>  [mm]\bruch{\vektor{6 \\ 3}*\vektor{9 \\ 0}}{\vektor{15 \\ 3}}[/mm]
> * [mm]\bruch{\vektor{9 \\ 1}*\vektor{3 \\ 0}}{\vektor{12 \\ 1}}[/mm]
> = [mm]\bruch{3}{91}[/mm]
>  
> Wäre das richtig oder wird durch das Verbinden die
> Wahrscheinlichkeit verfälscht?

Hallo,

wenn du vier Kugeln gleichzeitig entnimmst, kannst du das auf [mm] $\vektor{15 \\ 4}$ [/mm] Arten tun.

Damit erhältst du das als Wahrscheinlichkeit:

[mm] $\bruch{\vektor{6 \\ 3}*\vektor{9 \\ 1}}{\vektor{15 \\ 4}}=\bruch{12}{91}$ [/mm]

>  
> Dann habe ich noch versucht die roten Kugeln zu
> vernachlässigen:
>  [mm]\bruch{\vektor{6 \\ 3}*\vektor{14-6 \\ 3-3}}{\vektor{14 \\ 3}}[/mm]
> = 0,05
>  

Hier eigentlich genauso wie oben:

[mm] $P=\bruch{\vektor{6 \\ 6}*\vektor{9 \\ 5}}{\vektor{15 \\ 11}}=\bruch{6}{65}$ [/mm]

Gruß Glie


> Nun habe ich zwei Ergebnisse und beide stimmen nicht mit
> dem überein, was ich beim Baumdiagramm raushabe. Was kann
> ich machen?
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de