www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - kurvendiskussion
kurvendiskussion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurvendiskussion: korrektur
Status: (Frage) beantwortet Status 
Datum: 10:15 Di 13.09.2011
Autor: freak-club

Aufgabe
geben sie den definitionsbereich und wertebereich von f(x) = [mm] \bruch{1-x^2}{1+x^2} [/mm] an und skizzieren sie den graphen.


hallo,

also als erstes habe ich die symmetrie überprüft.

da f(-x)=f(x) ist, ist die funktion eine gerade funktion somit symmetrisch zur y achse.
da habe ich dann den punkt 0 eingesetzt und f(0)=1. somit habe ich schonmal den punkt wo der graph die y achse schneidet, welcher gleichzeitig der symmetrie punkt ist.

die nullstellen habe ich auch errechnet sind 1,-1. damit habe ich schon einige wichtige punkte zum zeichnen.

nun für den wertebereich wollte ich eine grenzwert betrachtung [mm] -\infty, \infty. [/mm]

das ist nun nämlich der knackpunkt. meine vorgehensweise sagte mir ein kollege wäre nicht zulässig.

ich habe folgendes gemacht:

[mm] \limes_{x\rightarrow\infty}\bruch{1-x^2}{1+x^2} [/mm]      regel von bernoulli

[mm] \limes_{x\rightarrow\infty}\bruch{-2x}{2x} [/mm]                erneut bernoullie

[mm] \limes_{x\rightarrow\infty}\bruch{-2}{2}=-1. [/mm]

das selbe ergibt sich für [mm] -\infty. [/mm]

die ergebnisse sind richtig, allerdings denke ich selbst dass man das nicht machen darf weil so ja nirgends eine variable vorhanden ist wo man den wert gegen den man gehen will einsetzen kann. bei der vorgehensweise wäre der grenzwert ja immer -1.
aber wollte das halt nochmal kurz nachfragen.

        
Bezug
kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Di 13.09.2011
Autor: notinX

Hallo,

> geben sie den definitionsbereich und wertebereich von f(x)
> = [mm]\bruch{1-x^2}{1+x^2}[/mm] an und skizzieren sie den graphen.
>  hallo,
>  
> also als erstes habe ich die symmetrie überprüft.
>  
> da f(-x)=f(x) ist, ist die funktion eine gerade funktion
> somit symmetrisch zur y achse.
>  da habe ich dann den punkt 0 eingesetzt und f(0)=1. somit
> habe ich schonmal den punkt wo der graph die y achse
> schneidet, welcher gleichzeitig der symmetrie punkt ist.
>  
> die nullstellen habe ich auch errechnet sind 1,-1. damit
> habe ich schon einige wichtige punkte zum zeichnen.

bis hierhin alles richtig.

>  
> nun für den wertebereich wollte ich eine grenzwert
> betrachtung [mm]-\infty, \infty.[/mm]
>  
> das ist nun nämlich der knackpunkt. meine vorgehensweise
> sagte mir ein kollege wäre nicht zulässig.
>  
> ich habe folgendes gemacht:
>  
> [mm]\limes_{x\rightarrow\infty} \bruch{1-x^2}{1+x^2}[/mm]      regel
> von bernoulli

Das ist die Regel von de L'Hospital.

>  
> [mm]\limes_{x\rightarrow\infty} \bruch{-2x}{2x}[/mm]                
> erneut bernoullie

Einfaches Kürzen hätte es hier auch getan.

>  
> [mm]\limes_{x\rightarrow\infty} \{-2}{2}[/mm] =-1.

Der Grenzwert stimmt.

>  
> das selbe ergibt sich für [mm]-\infty.[/mm]
>  
> die ergebnisse sind richtig, allerdings denke ich selbst
> dass man das nicht machen darf weil so ja nirgends eine
> variable vorhanden ist wo man den wert gegen den man gehen
> will einsetzen kann. bei der vorgehensweise wäre der
> grenzwert ja immer -1.

Nein, nicht bei der Vorgehensweise, sondern bei dieser speziellen Funktion ist der GW immer -1. Wäre ja auch irgendwie seltsam, wenn bei anderer Vorgehensweise ein anderer GW rauskäme, oder?

>  aber wollte das halt nochmal kurz nachfragen.

Soweit ich sehe, alles richtig.

Gruß,

notinX

Bezug
        
Bezug
kurvendiskussion: Alternativen für den Grenzwert
Status: (Antwort) fertig Status 
Datum: 10:33 Di 13.09.2011
Autor: M.Rex

Hallo

Für den Grenzwert gäbe es neben deiner völlig korrekten Lösung noch Alternativen:

Variante 1: x² ausklammern.

Also:

$ [mm] \frac{1-x^{2}}{1+x^{2}}=\frac{x^{2}\left(\frac{1}{x^{2}}-1\right)}{x^{2}\left(\frac{1}{x^{2}}+1\right)}=\frac{\frac{1}{x^{2}}-1}{\frac{1}{x^{2}}+1} [/mm] $

Variante 2: Polynomdivision:

$ [mm] \frac{1-x^{2}}{1+x^{2}}=(1-x^{2}):(1+x^{2})=-1+\frac{2}{x^{2}+1} [/mm] $

Beide Verfahren führen auch recht offensichtlich zu dem Grenzwert.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de