kurvendiskussion bei e-Funktio < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:06 So 25.05.2008 | Autor: | poppi |
Aufgabe | 1. Gegeben sei die Funktion
f(x) = xe hoch (-2a)
mit a > 0
a. Bestimmen Sie die Nullstellen, das Verhalten der Funktion im Unendlichen
sowie die Maxima/Minima (keine Wendepunkte bestimmen).
Skizzieren Sie den qualitativen Verlauf der Funktion. Hinweis:
Die Konstante a ist eine reelle Zahl.
b. Bestimmen Sie a so, daß f(1) = 1/e
ist. |
Hi Leute, schonmal Danke an alle die sich das überhaupt durchlesen.
Also, mir ist klar, dass mir hier keiner die ganze Aufgabe vorrechnet. Mein Problem ist eher der Anfang. Wäre schon sehr dankbar wenn mir jemand die Ableitung erstellen könnte. Ich habs versucht, sieht aber recht seltsam aus und ist glaube ich falsch. Zum anderen wäre es toll wenn mir jemand sagen könnte was das mit dem qualitativen Verlauf heißen soll. Ich dachte erst ich soll hoch und tiefpungte sowie nullstellen einzeichnen. Aber die sind ja unterschiedlich, je nach dem was man für a einsetzt. Die einzige Nullstelle die gleich bleibt ist die im Ursprung, wenn ich mich nicht irre.
Bei b) hab ich glaub die Lösung. Falls mir jemand sagen könnte ob diese stimmt, wäre ich sehr dankbar!!!
Und zwar bin ich der meinung das man für a = 1 einsetzen müsste um aus das geforderte Ergebniss zu kommen.
Danke fürt eurer Hilfe schonmal, und falls es möglich ist, würde ich nachher mein ergebnis der aufgabe am ende reinstellen. Wäre toll wenn mir dann jemand sagen könnteob ich das richtig gemacht habe.
LG Tanja
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:21 So 25.05.2008 | Autor: | Harris |
Hi!
Ich nehme mal an, es heißt nicht [mm] xe^{-2a} [/mm] sondern [mm] xe^{-2ax}
[/mm]
Na dann mal los:
Zu den Nullstellen: Die Nullstelle ist x = 0, das hast du richtig erkannt. Grund: Die e-Funktion kann nie Null werden.
Zum Grenzwert:
[mm] \limes_{x\rightarrow\infty}xe^{-2ax}=\limes_{x\rightarrow\infty}\bruch{x}{e^{2ax}}
[/mm]
Wird das so etwas ersichtlicher?
Zur Ableitung:
Du musst Aufgrund der Produktregel folgendermaßen vorgehen:
$f'(x)=(x)' * [mm] e^{-2ax} [/mm] + x * [mm] (e^{-2ax})'$
[/mm]
Kleiner Tipp: Falls du als Nullstelle der Ableitung x = [mm] \bruch{1}{2a} [/mm] herausbekommst, hast dus richtige gemacht.
Und bei der b) hast du auch nen Fehler drin. rechne nochmal nach!
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:03 So 25.05.2008 | Autor: | poppi |
mmhhh, hab jetzt als Nullstelle der Ableitung x = 1/-2a
Kannst du mir evtl sagen wo mein fehler liegt, denn wenn man
e hoch -2ax ableitet muss man ja wiederum die Kettenregel anwenden, oder???
man muss erst das e ableiten, aber das bleibt ja immer glaich und dann die hochzahl. Wenn ich -2ax ableite, komme ich auf -2a. Dadurch kommt dann eben auch das minus bei meinem ergebnis zustande. Irgendwie sehe ich leider meinen Fehler nicht. Wahrscheinlich ist er total offentsichtlich, aber ich komm leider nicht drauf.
Auch bei b sehe ich meine Fehler leider nicht. Wenn ich, wie vorgeschrieben für x = 1 einsetze habe ich ja: f(1)=e hoch -a. das hoch 2 bei der hochzahl der "originalfunktion" gilt doch nur für das x, oder. auf jeden fall ist 1/e doch das gleiche wie e hoch -1, oder??? SO komme ich jedenfalls auf mein ergebnis.
Danke nochmal für deine Hilfe
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:20 So 25.05.2008 | Autor: | Loddar |
Hallo Tanja!
> mmhhh, hab jetzt als Nullstelle der Ableitung x = 1/-2a
> Kannst du mir evtl sagen wo mein fehler liegt, denn wenn
> man
> e hoch -2ax ableitet muss man ja wiederum die Kettenregel
> anwenden, oder???
Wie lautet denn Deine gesamte Ableitung?
Der maßgebende Teil für die Nullstelle der Ableitung lautet doch [mm] $(1-2a*x)*e^{-2a*x}$ [/mm] . Daraus ergibt sich dann auch [mm] $x_e [/mm] \ = \ [mm] +\bruch{1}{2a}$ [/mm] .
> Auch bei b sehe ich meine Fehler leider nicht. Wenn ich,
> wie vorgeschrieben für x = 1 einsetze habe ich ja: f(1)=e
> hoch -a. das hoch 2 bei der hochzahl der "originalfunktion"
> gilt doch nur für das x, oder.
Nein, die 2 kannst Du doch nicht einfach unter den Tisch fallen lassen ...
[mm] $$f_a(\blue{1}) [/mm] \ = \ [mm] \blue{1}*e^{-\red{2}a*\blue{1}} [/mm] \ = \ [mm] e^{-2a} [/mm] \ = \ [mm] \bruch{1}{e} [/mm] \ = \ [mm] e^{-1}$$
[/mm]
Gruß
Loddar
|
|
|
|