www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - kurvenintegrale
kurvenintegrale < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurvenintegrale: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:10 Mo 08.08.2011
Autor: karimb

[mm] \integral_{0}^{1}{(t*( 2y_{1}y_{2} + 4y_{2}^2 ) + y_{1}) dt} [/mm] = [mm] y_{1}y_{2} [/mm] + [mm] 2y_{2}^2 [/mm] + [mm] y_{1} [/mm]
Wieso kann man auf diese Ergebnis kommen kann? danke!!

        
Bezug
kurvenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Mo 08.08.2011
Autor: notinX

Hallo,

> [mm]\integral_{0}^{1}{(t*( 2y_{1}y_{2} + 4y_{2}^2 ) + y_{1}) dt}[/mm]
> = [mm]y_{1}y_{2}[/mm] + [mm]2y_{2}^2[/mm] + [mm]y_{1}[/mm]
> Wieso kann man auf diese Ergebnis kommen kann? danke!!  

'wieso' sollte man das nicht? Auf welches Ergebnis kommst Du denn?

Gruß,

notinX

Bezug
                
Bezug
kurvenintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Mo 08.08.2011
Autor: karimb


> Hallo,
>  
> > [mm]\integral_{0}^{1}{(t*( 2y_{1}y_{2} + 4y_{2}^2 ) + y_{1}) dt}[/mm]
> > = [mm]y_{1}y_{2}[/mm] + [mm]2y_{2}^2[/mm] + [mm]y_{1}[/mm]
> > Wieso kann man auf diese Ergebnis kommen kann? danke!!  
>
> 'wieso' sollte man das nicht? Auf welches Ergebnis kommst
> Du denn?
>  
> Gruß,
>  
> notinX

ich dachte dieses Integral hat die form [mm] \integral_{0}^{1}{(at + b)dt} [/mm] mit a= [mm] 2y_{1}y_{2} [/mm] + [mm] 4y_{2}^2 [/mm] und b = [mm] y_{1} [/mm]
dann es ist gleich [mm] [t^{2y_{1}y_{2} + 4y_{2}^2} [/mm] + [mm] t*y_{1}]von [/mm] 0 bis 1
und nach Ersetzen = 1 + [mm] y_{1} [/mm]

Bezug
                        
Bezug
kurvenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Mo 08.08.2011
Autor: notinX


> > Hallo,
>  >  
> > > [mm]\integral_{0}^{1}{(t*( 2y_{1}y_{2} + 4y_{2}^2 ) + y_{1}) dt}[/mm]
> > > = [mm]y_{1}y_{2}[/mm] + [mm]2y_{2}^2[/mm] + [mm]y_{1}[/mm]
> > > Wieso kann man auf diese Ergebnis kommen kann? danke!!  
> >
> > 'wieso' sollte man das nicht? Auf welches Ergebnis kommst
> > Du denn?
>  >  
> > Gruß,
>  >  
> > notinX
>
> ich dachte dieses Integral hat die form
> [mm]\integral_{0}^{1}{(at + b)dt}[/mm] mit a= [mm]2y_{1}y_{2}[/mm] + [mm]4y_{2}^2[/mm]
> und b = [mm]y_{1}[/mm]

hat es auch, aber man braucht doch hier wirklich keine Integralformel. Das lässt sich mittels elementarer Integrationsregeln lösen.
Wie lautet denn die Stammfunktion von [mm] $f(x)=x^n\quad n\in\mathbb{N}\ [/mm] , \ [mm] n\neq-1$ [/mm]
?

> dann es ist gleich [mm][t^{2y_{1}y_{2} + 4y_{2}^2}[/mm] +
> [mm]t*y_{1}]von[/mm] 0 bis 1

Wenn das kein Tippfehler war stimmt das nicht.

> und nach Ersetzen = 1 + [mm]y_{1}[/mm]  


Bezug
                                
Bezug
kurvenintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Mo 08.08.2011
Autor: karimb


> > > Hallo,
>  >  >  
> > > > [mm]\integral_{0}^{1}{(t*( 2y_{1}y_{2} + 4y_{2}^2 ) + y_{1}) dt}[/mm]
> > > > = [mm]y_{1}y_{2}[/mm] + [mm]2y_{2}^2[/mm] + [mm]y_{1}[/mm]
> > > > Wieso kann man auf diese Ergebnis kommen kann? danke!!  
> > >
> > > 'wieso' sollte man das nicht? Auf welches Ergebnis kommst
> > > Du denn?
>  >  >  
> > > Gruß,
>  >  >  
> > > notinX
> >
> > ich dachte dieses Integral hat die form
> > [mm]\integral_{0}^{1}{(at + b)dt}[/mm] mit a= [mm]2y_{1}y_{2}[/mm] + [mm]4y_{2}^2[/mm]
> > und b = [mm]y_{1}[/mm]
>
> hat es auch, aber man braucht doch hier wirklich keine
> Integralformel. Das lässt sich mittels elementarer
> Integrationsregeln lösen.
>  Wie lautet denn die Stammfunktion von [mm]f(x)=x^n\quad n\in\mathbb{N}\ , \ n\neq-1[/mm]
>  
> ?  [1/(n+1)] * [mm] x^n+1 [/mm]
>  


> > dann es ist gleich [mm][t^{2y_{1}y_{2} + 4y_{2}^2}[/mm] +
> > [mm]t*y_{1}]von[/mm] 0 bis 1
>
> Wenn das kein Tippfehler war stimmt das nicht.

http://de.wikipedia.org/wiki/Tabelle_von_Ableitungs-_und_Stammfunktionen stammfunktion von 2x= x²

>  
> > und nach Ersetzen = 1 + [mm]y_{1}[/mm]  
>  

ok was hat er integriert dann? wie ist er auf dieses ergebnis gekommen? :-)


Bezug
                                        
Bezug
kurvenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mo 08.08.2011
Autor: notinX


> > > > Hallo,
>  >  >  >  
> > > > > [mm]\integral_{0}^{1}{(t*( 2y_{1}y_{2} + 4y_{2}^2 ) + y_{1}) dt}[/mm]
> > > > > = [mm]y_{1}y_{2}[/mm] + [mm]2y_{2}^2[/mm] + [mm]y_{1}[/mm]
> > > > > Wieso kann man auf diese Ergebnis kommen kann? danke!!  
> > > >
> > > > 'wieso' sollte man das nicht? Auf welches Ergebnis kommst
> > > > Du denn?
>  >  >  >  
> > > > Gruß,
>  >  >  >  
> > > > notinX
> > >
> > > ich dachte dieses Integral hat die form
> > > [mm]\integral_{0}^{1}{(at + b)dt}[/mm] mit a= [mm]2y_{1}y_{2}[/mm] + [mm]4y_{2}^2[/mm]
> > > und b = [mm]y_{1}[/mm]
> >
> > hat es auch, aber man braucht doch hier wirklich keine
> > Integralformel. Das lässt sich mittels elementarer
> > Integrationsregeln lösen.
>  >  Wie lautet denn die Stammfunktion von [mm]f(x)=x^n\quad n\in\mathbb{N}\ , \ n\neq-1[/mm]
>  
> >  

> > ?  [1/(n+1)] * [mm]x^n+1[/mm]
>  >  
>
>
> > > dann es ist gleich [mm][t^{2y_{1}y_{2} + 4y_{2}^2}[/mm] +
> > > [mm]t*y_{1}]von[/mm] 0 bis 1
> >
> > Wenn das kein Tippfehler war stimmt das nicht.
>  
> http://de.wikipedia.org/wiki/Tabelle_von_Ableitungs-_und_Stammfunktionen
> stammfunktion von 2x= x²

ich fragte Dich nach der Stammfunktion von [mm] $f(x)=x^n$ [/mm] und genau die Regel die sich dahinter verbirgt führt auch in Deinem Beispiel zum Ziel. Die [mm] $y_i$-Terme [/mm] sind einfach Konstanten (bezüglich t) und können beim Integrieren als Faktoren unverändert bleiben.

>  >  
> > > und nach Ersetzen = 1 + [mm]y_{1}[/mm]  
> >  

> ok was hat er integriert dann? wie ist er auf dieses
> ergebnis gekommen? :-)
>  

Integriert hat er den Integranden und wie er drauf kommt steht oben.

Bezug
                                                
Bezug
kurvenintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Mo 08.08.2011
Autor: karimb

ok habs kapiert. noch ein kleines ding:
[mm] \integral_{}^{}{(e^{x1}*x2 + 1) dx1} [/mm] = [mm] e^{x1}*x2 [/mm] + x1 aber warum? ok stammfunktion von [mm] e^x [/mm] = [mm] e^x [/mm] aber x2! sollte es nicht [mm] e^{x1} [/mm] * [mm] x2^{2}/2 [/mm] + x1 sein ??

Bezug
                                                        
Bezug
kurvenintegrale: Integrationsvariable beachten
Status: (Antwort) fertig Status 
Datum: 22:07 Mo 08.08.2011
Autor: Loddar

Hallo karimb!


Da hier ausschließlich nach der Variablen [mm] $x_1$ [/mm] integriert wird (zu erkennen am [mm] $dx_{\red{1}}$ [/mm] im Integral), wird die Variable [mm] $x_2$ [/mm] wie eine Konstante behandelt.


Gruß
Loddar


Bezug
                                                                
Bezug
kurvenintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Mo 08.08.2011
Autor: karimb

ja ja weiß ich schon.. deswegen! x2 habe ich als konstante angenommen.
zB. Stammfunktion von 2x = x² = 2/(1+1) * x^(1+1)
ist das nicht den fall hier? oder wie sollte ich eigentlich integrieren?


Bezug
                                                                        
Bezug
kurvenintegrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:32 Mo 08.08.2011
Autor: karimb


> ja ja weiß ich schon.. deswegen! x2 habe ich als konstante
> angenommen.
>  zB. Stammfunktion von 2x = x² = 2/(1+1) * x^(1+1)
> ist das nicht den fall hier? oder wie sollte ich eigentlich
> integrieren? oder welche formel eignet sich zu meinem fall?
>  


Bezug
                                                                        
Bezug
kurvenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Mo 08.08.2011
Autor: Adamantin


> ja ja weiß ich schon.. deswegen! x2 habe ich als konstante
> angenommen.
>  zB. Stammfunktion von 2x = x² = 2/(1+1) * x^(1+1)
> ist das nicht den fall hier? oder wie sollte ich eigentlich
> integrieren?
>  

Was um Himmels Willen möchtest du damit aussagen? Also die Stammfunktion ist zwar korrekt, normalerweise kenne ich das aber in der Form:

[mm] $\integral{ax^n}dx=\bruch{a}{n+1}x^{n+1}+C$, [/mm] aber wenn du dir die zwei als zwei-eintel vorstellen willst, warum nicht, solange du die Regel sicher beherrscht...

Abgesehen davon, genau das passierte doch, aber die e-Funktion ist doch als Besonderheit ihre eigene Stammfunktion! Da [mm] e^x [/mm] integriert wieder [mm] e^x [/mm] (und differentiert natürlich auch) ergibt, bleibt der erste Term, also [mm] e^{x_1} [/mm] so bestehen. [mm] x_2 [/mm] ist in dieser Gleichung eine beliebige Konstante, wie dir Loddar schon gesagt hat. Die 1 wird dann als Konstante integriert und liefert ein [mm] x_1. [/mm] Das ist das Ergebnis. Wo hast du Probleme mit deiner obigen Regel? Die gilt ja nur für ganzrationale Potenzfunktionen, nicht für die e-Funktion.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de