www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - kurvenschar
kurvenschar < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurvenschar: aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:20 Di 08.04.2008
Autor: leuchte

Aufgabe
[mm] f(x)=x^2 [/mm] - 2*ax + 1  a element aus R positiv und die null (soll eine Kurvenschar sein,das kleine a beim f(x) fehlt nur)
Bestimmen sie rechnerisch, welche Kurve der Schar an der Stelle 4 die Steigung 1 hat.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hi leute,
ich habe ein großes problem mit dieser aufgabe,weil sie zudem auch nochs ehr wichtig für meine matheklausur am freitag ist.

meine idee war dazu, die werte irgendwie in die erste ableitung einzusetzten und so vielleicht das a herauszubekommen.ich bin aber nicht sicher und würde mich freuen wenn mir hier jemand helfen könnte.

danke

grüße leuchte

        
Bezug
kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Di 08.04.2008
Autor: statler


> [mm]f(x)=x^2[/mm] - 2*ax + 1  a element aus R positiv und die null
> (soll eine Kurvenschar sein,das kleine a beim f(x) fehlt
> nur)
>  Bestimmen sie rechnerisch, welche Kurve der Schar an der
> Stelle 4 die Steigung 1 hat.

Hi Melanie!

>  ich habe ein großes problem mit dieser aufgabe,weil sie
> zudem auch nochs ehr wichtig für meine matheklausur am
> freitag ist.
>  
> meine idee war dazu, die werte irgendwie in die erste
> ableitung einzusetzten und so vielleicht das a
> herauszubekommen.ich bin aber nicht sicher und würde mich
> freuen wenn mir hier jemand helfen könnte.

Der Gedanke, mit der 1. Ableitung zu hantieren, ist doch schon mal nicht schlecht, weil mir die 1. Ableitung die Steigung gibt. Nun ist die 1. Ableitung f'(x) = 2x - 2a. Für x = 4 soll das 1 ergeben, also liefert das durch Einsetzen welche Bestimmmungsgleichung für a? Den Rest mußt du machen.

Anderer Weg: Der Graph ist eine verschobene Normalparabel. Warum? Wenn du bestimmen kannst, wie sie verschoben ist und vielleicht auch noch weißt, wo die Normalparabel die Steigung 1 hat, dann kannst du ausrechnen, wo die verschobene Parabel die Steigung 1 hat.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
kurvenschar: aufgabe1
Status: (Frage) beantwortet Status 
Datum: 15:46 Di 08.04.2008
Autor: leuchte

also setzte ich die 4 und die in die erste ableitung ein und löse nach a auf? das heißt ich bekomme dann a=3,5 raus.
stimmt das?

danke schon mal

Bezug
                        
Bezug
kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Di 08.04.2008
Autor: statler


> also setzte ich die 4 und die in die erste ableitung ein
> und löse nach a auf? das heißt ich bekomme dann a=3,5
> raus.
>  stimmt das?

Ja, das stimmt. Könntest du das auch mit dem anderen Weg, vielleicht unter Zuhilfenahme einer Zeichnung? Wenn du im LK bist, solltest du das :-)

Ciao
Dieter



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de