www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - kurze übungsaufgaben
kurze übungsaufgaben < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurze übungsaufgaben: Kontrolle und Ansatzhilfe
Status: (Frage) beantwortet Status 
Datum: 15:42 Mi 22.02.2006
Autor: declatereter

hallo!!

hier erstmal die aufgaben

[Dateianhang nicht öffentlich]

ich habe jede aufgabe angefangen. jedoch bin ich mir ziemlich unsicher, da ich bei den einführungsstunden gefehlt habe und nun viel nachzuarbeiten habe. daher bitte nicht zu schmunzeln, wenn das ein oder andere ergebnis weit daneben ist:) ach ja ich gebe noch an, ob die reihenfolge wichtig ist und ob wiederholungen auftreten... ist ja auch nicht unwichtig. dann habe ich nur noch n bzw. k eingesetzt! aufgabe 6) muss nicht berechnet werden!
jetzt geht's los:

1) 24

2) Reihenfolge: wichtig, Wiederholung: ja, n=10, k=4 --> Ergebnis 10000

3) Reihenfolge: wichtig, Wiederholung: nein, n=10, k=5 --> Ergebnis 30240

4) P(A) = 2/4 also dann gekürzt 1/2

5) Reihenfolge: wichtig, Wiederholung: nein, weiter weiß ich hier leider nicht...

7) 75

8) Reihenfolge: nicht wichtig, Wiederholung: nein, n=12, k=3 --> dann kommt blödsinn raus... habe mir überlegt, dass es 1/4 sein könnte?!

9) Reihenfolge: nicht wichtig, Wiederholung: ja,  hier weiß ich nicht genau was für werte  k und n annehmen...

schon mal danke im voraus!:)

MFG

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
kurze übungsaufgaben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:09 Mi 22.02.2006
Autor: Astrid

Hallo declatereter,

kannst du bitte auch mit angeben, was du genau gerechnet hast, bzw. wo eingesetzt. Also: Ob du z.B. [mm] \bruch{3!}{4!} [/mm] gerechnet hast oder ${10 [mm] \choose [/mm] 5}$ usw. Insbesondere bei der 4 und 7. Sonst ist es sehr aufwändig zu kontrollieren, weil man alles selbst nachrechnen muss.

Falls du mit dem Formeleditor Schwierigkeiten hast:

Binomialkoeffizienten schreibst du so:

${n [mm] \choose [/mm] k}$ für ${n [mm] \choose [/mm] k}$

Brüche so:

[mm] [red][nomm]$\bruch{1}{4}$[/nomm][/red] [/mm] für [mm] $\bruch{1}{4}$ [/mm]

Viele Grüße
Astrid

Bezug
        
Bezug
kurze übungsaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Mi 22.02.2006
Autor: Astrid

Hallo,

nun habe ich mich doch durchgerechnet. :-)

> 1) 24

[ok]

>  
> 2) Reihenfolge: wichtig, Wiederholung: ja, n=10, k=4 -->
> Ergebnis 10000

Fast. Es sollen nur ungerade Ziffern zugelassen werden, also: Variation mit Wiederholung, n=5, k=4

>  
> 3) Reihenfolge: wichtig, Wiederholung: nein, n=10, k=5 -->
> Ergebnis 30240

[ok]

Es aber wäre schöner gewesen - zum Korrigieren - wenn du [mm]{10 \choose 5} \cdot 5![/mm] angegeben hättest.

> 4) P(A) = 2/4 also dann gekürzt 1/2

[notok] Wie kommst du darauf?

Du mußt die Anzahl der günstigen Ergebnisse durch die Anzahl der möglichen Ergebnisse teilen. Das sind jeweils Permutationen ohne Wdh. mit n=3 bzw. n=4.
Du kannst aber auch einfach sagen:
[mm]P(A)=P(\mbox{Erste OP bei einer Frau}) \cdot P(\mbox{Zweite OP beim Mann})=\bruch{3}{4} \cdot \bruch{1}{3}[/mm]

> 5) Reihenfolge: wichtig, Wiederholung: nein, weiter weiß
> ich hier leider nicht...

Die Anzahl der möglichen Ereignisse ist einfach eine Permutation der 5 Leute, also 5! Möglichkeiten. Davon ist natürlich nur eine "günstig", d.h. bei einer einzigen Anordnung stehen sie alphabetisch.

> 7) 75

  
[notok]

Da du einfach 5 aus 15 Leuten auswählst, spielt die Reihenfolge keine Rolle, Wiederholungen sind auch nicht möglich. Also hast du eine Kombination ohne Wiederholung, d.h. $15 [mm] \choose [/mm] 5$ Möglichkeiten.

> 8) Reihenfolge: nicht wichtig, Wiederholung: nein, n=12,
> k=3 --> dann kommt blödsinn raus... habe mir überlegt, dass
> es 1/4 sein könnte?!

Nein, das stimmt nicht.
Wieviele Möglichkeiten gibt es insgesamt, 3 Stück aus 12 auszuwählen? Wie in 7) handelt es sich um eine Kombination ohne Wiederholung, d.h. die Anzahl der Möglichkeiten ist ${12 [mm] \choose [/mm] 3}$. Und wieviele Möglichkeiten gibt es nun, beim Ziehen von 3 Stück genau die 3 defekten zu erwischen? Genau eine Möglichkeit.

> 9) Reihenfolge: nicht wichtig, Wiederholung: ja,  hier weiß
> ich nicht genau was für werte  k und n annehmen...

(Hier bin ich mir selbst nicht ganz sicher.)
Du hast es aber schon richtig erkannt: Es handelt sich um eine Kombination mit Wiederholung. Und zwar wählst du von 5 verschiedenen Elementen 5 aus, aber mit möglicher Wiederholung. Das heißt, n=5 und k=5 und die Anzahl der Möglichkeiten ist

[mm]{5+5-1 \choose 5}[/mm].



Wenn dir irgendetwas unklar ist, dann frag nach. Ich habe jetzt absichtlich nicht so viel "drumherum" erklärt! :-) Ich hoffe, ihr habt das, wie meist üblich, als Permutation, Variation und Kombination eingeführt und du verstehst die Begriffe.

Viele Grüße
Astrid

Bezug
                
Bezug
kurze übungsaufgaben: danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 Mi 22.02.2006
Autor: declatereter

hallO!!

ich werde heut abend bzw. morgen mal die sachen nachrechnen und wenn ich fragen habe, melde ich mich.

MFG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de