www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - längstes Existenzintervall DGL
längstes Existenzintervall DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

längstes Existenzintervall DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 05:50 So 09.10.2011
Autor: kushkush

Aufgabe
Gegeben sei die DGL $y'(x)= cos(x)exp(y(x)), x, y(x) [mm] \in \IR$. [/mm]

a) Geben Sie eine explizite Lösung des Anfangswertproblems dieser DGL mit [mm] $y(x_{0})=y_{0}$ [/mm] an.

b) Sei [mm] $[x_{0},x_{max}[$ [/mm] das längste Existenzintervall der Lösung. Für welche [mm] $(x_{0},y_{0})$ [/mm] gilt [mm] $x_{max}=\infty$? [/mm] Wie verhält sich $y(x)$ für [mm] $x\rightarrow x_{max}$, [/mm] wenn [mm] $x_{max}$ [/mm] endlich ist?

c) Bestimmen Sie [mm] $lim_{x\uparrow x_{max}}$ [/mm]

Hallo!


a) [mm] $\frac{dy}{dx} [/mm] = [mm] cos(x)e^{y} [/mm]  $
[mm] $\Rightarrow \int\frac{1}{e^{y}}dy [/mm]  = [mm] \int [/mm] cos(x)dx$
[mm] $\Rightarrow -e^{-y}=sin(x) [/mm] + c $
[mm] $\Rightarrow [/mm]  y = -log(-sin(x)-c)$
[mm] $\Rightarrow c=-e^{-y_{0}}-sin(x_{0})$ [/mm]

Lösung des AWP: [mm] $y=-log(-sin(x)+e^{-y_{0}}+sin(x_{0}))= log(\frac{1}{-sin(x)+e^{-y_{0}}+sin(x_{0})})$ [/mm]


b) Es muss [mm] $e^{-y_{0}}+sin(x_{0})) [/mm] > sin(x)$ sein, damit eine Lösung des AWPs existiert.  [mm] $x_{max}$ [/mm] ist [mm] $\infty$, [/mm] weil [mm] $sin(x_{0})+e^{-y_{0}} [/mm] > 1$. Kann [mm] $x_{max}$ [/mm] nur endlich gewählt werden, dann ist [mm] $sin(x_{max})=sin(x_{0}+e^{-y_{0}})$ [/mm] zu betrachten. Also für [mm] $x\rightarrow x_{max}$ $\lim_{x\rightarrow x_{max}} \log \frac{1}{-sin(x)+e^{-y_{0}}+sin(x_{0}} \rightarrow \infty$. [/mm]


c) [mm] $-\infty$ [/mm]


So OK?



Bin für jegliche Hilfestellung sehr dankbar!




Gruss
kushkush

        
Bezug
längstes Existenzintervall DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 So 09.10.2011
Autor: fred97


> Gegeben sei die DGL [mm]y'(x)= cos(x)exp(y(x)), x, y(x) \in \IR[/mm].
>
> a) Geben Sie eine explizite Lösung des Anfangswertproblems
> dieser DGL mit [mm]y(x_{0})=y_{0}[/mm] an.
>
> b) Sei [mm][x_{0},x_{max}[[/mm] das längste Existenzintervall der
> Lösung. Für welche [mm](x_{0},y_{0})[/mm] gilt [mm]x_{max}=\infty[/mm]? Wie
> verhält sich [mm]y(x)[/mm] für [mm]x\rightarrow x_{max}[/mm], wenn [mm]x_{max}[/mm]
> endlich ist?
>  
> c) Bestimmen Sie [mm]lim_{x\uparrow x_{max}}[/mm]
>  Hallo!
>  
>
> a) [mm]\frac{dy}{dx} = cos(x)e^{y} [/mm]
>  [mm]\Rightarrow \int\frac{1}{e^{y}}dy = \int cos(x)dx[/mm]
>  
> [mm]\Rightarrow -e^{-y}=sin(x) + c[/mm]
>  [mm]\Rightarrow y = -log(-sin(x)-c)[/mm]
>  
> [mm]\Rightarrow c=-e^{-y_{0}}-sin(x_{0})[/mm]
>  
> Lösung des AWP: [mm]y=-log(-sin(x)+e^{-y_{0}}+sin(x_{0}))= log(\frac{1}{-sin(x)+e^{-y_{0}}+sin(x_{0})})[/mm]
>  
>
> b) Es muss [mm]e^{-y_{0}}+sin(x_{0})) > sin(x)[/mm] sein, damit eine
> Lösung des AWPs existiert.  [mm]x_{max}[/mm] ist [mm]\infty[/mm],



?????

> weil
> [mm]sin(x_{0})+e^{-y_{0}} > 1[/mm]


Für [mm] x_0=0 [/mm] und [mm] y_0 [/mm] = 3000000 stimmt das aber nicht.

FRED

> . Kann [mm]x_{max}[/mm] nur endlich
> gewählt werden, dann ist
> [mm]sin(x_{max})=sin(x_{0}+e^{-y_{0}})[/mm] zu betrachten. Also für
> [mm]x\rightarrow x_{max}[/mm] [mm]\lim_{x\rightarrow x_{max}} \log \frac{1}{-sin(x)+e^{-y_{0}}+sin(x_{0}} \rightarrow \infty[/mm].
>  
>
> c) [mm]-\infty[/mm]
>
>
> So OK?
>  
>
>
> Bin für jegliche Hilfestellung sehr dankbar!
>  
>
>
>
> Gruss
>  kushkush


Bezug
                
Bezug
längstes Existenzintervall DGL: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:23 So 09.10.2011
Autor: kushkush

Hallo,

> ?????

$log(..) $ ist für  alle $sin(x) < [mm] sin(x_{0})+e^{-y_{0}}$ [/mm] definiert. Gesucht für das grösste Intervall ist also das kleinste x mit $sin(x) [mm] \ge sin(x_{0})+e^{-y_{0}}$, [/mm] das ist [mm] $x_{max}$. [/mm] Wegen der Beschränktheit von sin(x) gibt es kein [mm] $x\ge sin(x_{0}) e^{-y_{0}} [/mm] $, wenn [mm] $sin(x_{0})+e^{-y_{0}}>1$. [/mm] Deswegen muss [mm] $x_{max}= \infty$ [/mm] sein und damit [mm] $sin_{x_{0}}+e^{-y_{0}}> [/mm] 1$ Für ein endliches [mm] $x_{max}$ [/mm] gilt [mm] $sin(x)=sin(x_{0})+e^{-y_{0}}$ [/mm] und damit [mm] $\lim _{x\rightarrow x_{max}} \log \frac{1}{-sin(x)+sin(x_{0})+e^{-y_{0}}} \rightarrow \infty$ [/mm]

Ist das OK und stimmt der Rest?


> FRED

Vielen Dank!


Gruss
kushkush


Bezug
                        
Bezug
längstes Existenzintervall DGL: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 12.10.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de