www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - lange Hochkette
lange Hochkette < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lange Hochkette: Frage, die ich nicht lösen kan
Status: (Frage) beantwortet Status 
Datum: 20:08 Mo 21.03.2005
Autor: karter

erstmal Hallo,
Hiermit begrüße ich erstmal alle Sitebeteiligten ;-)

Ich hab ein kleines Problem, dass mir mein Mathelehrer gestellt hat. Und ich habe ca. 2 Stunden daran rumprobiert es aber nicht getcheckt. Also helft mir bitte:

Die Summe der Folge:
1³ + 2³ + 3³ + ....... + n³
ergibt eine 21-stellige Zahl.
Von dieser Summe sind allerdings nur die ersten drei und die letzten drei Stellen bekannt.
Sie sieht folgendermaßen aus: 310 ..............321 (insgesamt 21 Ziffern)

und kennt ihr die Lösung und könnt ihr mir helfen?
Das wäre doch praktisch 1+8+27usw.
Hoffe auf schnelle Hilfe!!
Mfg karter oder Julius Lang

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
lange Hochkette: probieren... und sonst?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 Mo 21.03.2005
Autor: Peter_Pein

Hallo karter,

als ich []diese Knobelei in Angriff nahm, habe ich zuerst einen geschlossenen Ausdruck für [mm] $\summe_{k=1}^{n}{k^{3}}=\bruch{1}{\mbox{?}}n^{2}(n+1)^{2}$ [/mm] ermittelt. Ich muß zu meiner Schande gestehen, dass ich den Compi den Rest habe erledigen lassen. Es kam für n eine sechstellige Zahl [mm] $(1\Box \Box \Box \Box [/mm] 6)$ heraus.

Ist zwar keine große Hilfe, aber für das Fragezeichen bekommst Du den Wert durch Probieren schnell heraus. Vieleicht machst Du dir ja die Mühe, aus den Schlussziffern auf die letzten Ziffern von n zu schließen (ich war zu faul dafür).

Viel Spass noch beim Knobeln,
  Peter

P.S.: richtig frustrierend war, dass der Compi nur 0.2 Sekunden brauchte.


Bezug
        
Bezug
lange Hochkette: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mo 21.03.2005
Autor: Teletubyyy

Hallo Julius

Die Aufgabe ist für 7. Klasse extrem schwer!!! Ich werd dir mal ein paar Denkanstöße dazu aufschreiben:
Da $Z=310.............321$ gilt offenbar auch
[mm] $M'=310999999999999999321\ge Z\ge [/mm] 310000000000000000321=M$
Ein Blick in die Formelsammlung verrät dir ferner:
[mm]1^3+2^3+...+n^3=\frac{1}{4}(n+1)^2n^2=\left( \frac{n(n+1)}{2} \right)^2(=Z)[/mm]
Interessanter Weise gilt [mm] also:$(1+2+...+n)^2=1^3+2^3+...+n^3$ [/mm] (hat mit deinem Problem nichts zu tun - könnte dir aber helfen falls du die obige Formel für die Summe der Kuben herleiten willst ;-))


Als nächstes löse ich mal die beiden Gleichungen M=Z(i) und M'=Z(ii):
i) [mm] $n^2+n-2M=0 \gdw n=-0,5\pm \wurzel{2M+0,25}$. [/mm] mit n>0 erhällt man: n=187652,46.....
[mm] ii)$n=\wurzel{2M'+0,25}-0,5=187803,61...$ [/mm]
Hierraus kann man nun folgern:
[mm] $187653\le [/mm] n [mm] \le [/mm] 187803$


Alle möglichen n durchzuprobiern würde allerdings immernoch zu lange dauern. Du hast allerdings noch einige Informationen gegeben:

Das Quadrat von [mm] \frac{n(n+1)}{2} [/mm] endet auf 321
              --> es reicht wenn du dir überlegst welche Quadrate von 3 stelligen Zahlen enden auf 321 (Denn auch wenn eine Zahl mehr als drei Stellen hat, so bestimmen trotzdem nur die letzen drei Stellen über die letzten drei Stellen des Quadrates...)
ich glaub umständlicher hätte ich das jetzt nicht mehr formulieren können ;-)
...
...
..
Den Rest überlass ich dir.

Ich bin ziehmlich unsicher ob du das verstehts was ich geschrieben hab
Wenn du Fragen dazu hast meld dich einfach. (Ich hätt das in der 7. wohl kaum verstanden!!!)

Gruß Samuel



Bezug
        
Bezug
lange Hochkette: Lösung
Status: (Antwort) fertig Status 
Datum: 21:16 Di 22.03.2005
Autor: MathePower

Hallo,

ich habe eine Lösung mit Hilfe zahlentheoretischer Überlegungen gefunden:

Zunächst habe ich diejenigen Quadratzahlen bestimmt, die bei Division duch 1000 den Rest 321 lassen.
Es sind dies  111, 611, 361, 861, 139, 639, 389, 889.

Betrachte man das Doppelte dieser Zahlen modulo 10, so kommt man zu dem Schlusse, das die Zahl nur die Gleichung [mm]n\;\left( {n\; + \;1} \right)\; \equiv \;2\;(10)[/mm] Lösungen hat. Demzufolge muß n auf  1,3,6 oder 8 enden.

Treibt man das Spielchen weiter und betrachtet [mm] n\;\left( {n\; + \;1} \right)\; \equiv \;22\;(100)[/mm]. Dann wird das nur erfüllt, wenn n auf 33, 41, 58 oder 66 endet.

Da der Bereich schon eingegrenzt wurde, kommen nur folgende Zahlen in Frage:

33: 187733
41: 187741
58: 187658, 187758
66: 187666, 187766

Von diesen Zahlen erfüllt nur die Zahl n=187666 die Bedingungen.

[mm]\left( {\frac{{187666\; \times \;187667}} {2}} \right)^2 \; = \;{\text{310089475472083627321}}[/mm]

Gruß
MathePower




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de