www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - lim inf und lim sup
lim inf und lim sup < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lim inf und lim sup: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Mi 27.01.2010
Autor: rmadrid7andi

Aufgabe
Ermitteln Sie alle Häufungspunkte und den lim inf und den lim sup der Folge:

[mm] a_{n}=\bruch{1+2n*sin(\bruch{n\pi}{4})}{2+3n} [/mm]

hi,

kurze frage bitte, häufungspunkte sind kein problem.

aber wie ist der sinus von [mm] +\infty [/mm] und [mm] -\infty [/mm] definiert?

idee wäre gewesen:

[mm] +\bruch{\wurzel{2}}{3} [/mm] bzw. [mm] -\bruch{\wurzel{2}}{3} [/mm]

das wären die beiden größten häufungspunkte.

danke für die hilfe.

lg, andi


        
Bezug
lim inf und lim sup: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Mi 27.01.2010
Autor: steppenhahn

Hallo Andi,

> Ermitteln Sie alle Häufungspunkte und den lim inf und den
> lim sup der Folge:
>  
> [mm]a_{n}=\bruch{1+2n*sin(\bruch{n\pi}{4})}{2+3n}[/mm]
>  hi,
>  
> kurze frage bitte, häufungspunkte sind kein problem.
>  
> aber wie ist der sinus von [mm]+\infty[/mm] und [mm]-\infty[/mm] definiert?

Der ist gar nicht definiert - der Limes [mm] $\lim_{x\to\infty}\sin(x)$ [/mm] existiert nicht - deswegen konvergiert deine Folge ja auch nicht, sondern ist unbestimmt divergent.

> idee wäre gewesen:
>  
> [mm]+\bruch{\wurzel{2}}{3}[/mm] bzw. [mm]-\bruch{\wurzel{2}}{3}[/mm]
>  
> das wären die beiden größten häufungspunkte.

Bin ich ehrlich gesagt nicht deiner Meinung.
Es geht ja darum, welche Werte [mm] \sin(\frac{n*\pi}{4}) [/mm] annehmen kann.
Nun:

n = 1 --> [mm] \sqrt{2}/2 [/mm]
n = 2 --> 1
n = 3 --> [mm] \sqrt{2}/2 [/mm]
n = 4 --> 0
n = 5 --> [mm] -\sqrt{2}/2 [/mm]
n = 6 --> -1
n = 7 --> [mm] -\sqrt{2}/2 [/mm]
n = 8 --> 0

Die Folge hat also insgesamt 5 Häufungspunkte, und limsup / liminf ist anders als von dir angegeben.

Grüße,
Stefan

Bezug
                
Bezug
lim inf und lim sup: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Mi 27.01.2010
Autor: rmadrid7andi

also sind die lim inf und lim sup:

-2/3 und +2/3?

lg

danke für die hilfe :)

Bezug
                        
Bezug
lim inf und lim sup: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Mi 27.01.2010
Autor: steppenhahn

Hallo,

> also sind die lim inf und lim sup:
>  
> -2/3 und +2/3?

Genau [ok].

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de