www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - lim x->0 richtig gerechnet?
lim x->0 richtig gerechnet? < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lim x->0 richtig gerechnet?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Mi 04.06.2008
Autor: mrkwg

Ich habe folgende Aufgabe aus einer alten Prüfung versucht zu berechnen.
Eine etwas komplizierte Seite im Inet sagt mir das da der Grenzwert  [mm] \infty [/mm]
ist. Ich habe jedoch 1 raus. Hoffe jemand kann meine Rechnung nachvollziehen und mir sagen wo ggf. mein Fehler war.
Ich soll mit l hospital rechnen

gegen 0 soll da stehen


[mm] \limes_{n\rightarrow\null} \bruch{e^x-1}{tan(2x)} [/mm]

Ableitung von [mm] e^x-1 [/mm] = [mm] e^x [/mm]
Ableitung von tan(2x) habe ich wie folgt gerechnet.
tan = g
2x = h
Kettenregel

[mm] \bruch{dh}{dx}*\bruch{dg}{dx}*h(x) [/mm]


[mm] $2*\bruch{1}{cos^2{2x}}$ [/mm]

Somit ergibt sich : [mm] $\bruch{e^x}{2\bruch{1}{cos^2{2x}}}$ [/mm]

Da 0 eingesetzt ergibt bei mir = 1

Ist das richtig, oder wo steckt der Fehler?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


zwei Formeln durch Mod umgeschrieben. Hoffentlich so, wie sei gemeint waren.

        
Bezug
lim x->0 richtig gerechnet?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Mi 04.06.2008
Autor: fred97

Wahrscheinlich hast Du richtig differenziert, es aber etwas chaotisch auf geschrieben.
Schreib die Ableitung von tan(2x) nochmal sauber auf, dann wirst Du sehen ,dass Dein Grenzwert nicht richtig ist.

FRED

Bezug
                
Bezug
lim x->0 richtig gerechnet?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 Mi 04.06.2008
Autor: mrkwg

Also die Ableitung von tan(2x) für mich [mm] 2*\bruch{1}{cos^2}*2x [/mm]
Und alleine weil ich hinten schon die 2*0 beim einsetzten habe, wäre der Nenner 0 und somit nur noch [mm] e^0=1 [/mm] übrig?!

Bezug
                        
Bezug
lim x->0 richtig gerechnet?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Mi 04.06.2008
Autor: fred97

Schau doch mal was ardik gemacht hat !!!!

Bezug
        
Bezug
lim x->0 richtig gerechnet?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:50 Mi 04.06.2008
Autor: ardik

Hallo mrkwg,


> Ist das richtig, oder wo steckt der Fehler?

Zunächst mal in der Anwendung des Formeleditors... ;-)
Ich bin mal so frei, mit Moderator-Fähigkeiten das direkt in Deinem Beitrag zu korrigieren.
unter anderem: zwischen cos und dessen Argument gehört natürlich kein Mulitplikationspunkt ;-) also [mm] $\cos^2{(2x)}$ [/mm] statt [mm] $\cos^2\cdot2x$ [/mm]

Schöne Grüße
 ardik

Bezug
                
Bezug
lim x->0 richtig gerechnet?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:09 Mi 04.06.2008
Autor: mrkwg

Das sieht in der Tat schon was anders aus. Allerdings würde ich das doch mal als Fehler von mir bezeichnen, weil ich den *-Punkt bewusst gesetzt hatte.
Jetzt habe ich aber das Problem das "taschenrechnergerecht" einzugeben. Der will sobald ich cos eingebe, direkt einen Wert dahinter haben. Also z.B. cos(x) oder cos(5).
Bei mir wäre ja nun nicht. Wenn ich eingebe [mm] cos()^2(2*0) [/mm] kommt bei mir eine Fehlermeldung, die in dem fall ja gut sein könnte, weil sich [mm] \infty [/mm] schlecht anzeigen lässt.
Ist die Sache so nun richtig?

Bezug
                        
Bezug
lim x->0 richtig gerechnet?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Mi 04.06.2008
Autor: ardik

Hallo mrkwg,

Die taschenrechnergerechte Form dürfte etwa so aussehen:

(cos(2x))^2

Im Zweifel setze also auch die 2x, die ja gemeinsam das Argument des cos darstellen in Klammern. Und der ganze cos(...) soll ja dann quadriert werden. Die Schreibweise [mm] $cos^2(...)$ [/mm] ist letztlich eine Abkürzung für [mm] $\left(cos\left(...\right)\right)^2$. [/mm]

Schöne Grüße,
ardik


Bezug
                        
Bezug
lim x->0 richtig gerechnet?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Mi 04.06.2008
Autor: fred97

Du verstehst offensichtlich nicht, worum es geht:

die Ableitung von tan(2x) ist   2/cos²(2x)

Nun berechne mal Deine Grenzwert (es geht auch ohne Taschenrechner !!)



FRED

Bezug
                                
Bezug
lim x->0 richtig gerechnet?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 Mi 04.06.2008
Autor: fred97

Mein letzter Beitrag war natürlich an  mrkwg gerichtet und nicht an ardik  !!!

FRED


Bezug
        
Bezug
lim x->0 richtig gerechnet?: Kettenregel
Status: (Antwort) fertig Status 
Datum: 15:21 Mi 04.06.2008
Autor: ardik

Hallo mrkwg,

noch eine Anmerkung...

>  Ableitung von tan(2x) habe ich wie folgt gerechnet.
>  tan = g
>  2x = h
>  Kettenregel
>  
> [mm]\bruch{dh}{dx}*\bruch{dg}{dx}*h(x)[/mm]

Zwar hast Du sie unten korrekt angewendet, aber so ist die Kettenregel nicht korrekt dargestellt. Mit g als "äußerer" und h als "innerer" Funktion lautet sie:
$f'(x) = [mm] \bruch{dh}{dx}*\bruch{dg}{dh}$ [/mm]
kurz: "innere mal äußere Ableitung".

Schöne Grüße
 ardik

Bezug
                
Bezug
lim x->0 richtig gerechnet?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 Mi 04.06.2008
Autor: mrkwg

glaube das so langsam verstanden zu haben.

Also wenn ich  

2/cos²(2x)  mit x=0 versuche zu berechnen kommt ein Fehler.
[mm] cos^2(0) [/mm] sollte ja nicht allzuviel (also 0, bzw. nicht zu berechnen sein) Somit
ergibt sich 2/0 und ich komme ebenfalls nicht mehr auf 1.

Kann ich sagen weil ich da auf kein Ergebnis komme, ist meine Lösung [mm] \infty [/mm] ?



Bezug
                        
Bezug
lim x->0 richtig gerechnet?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 Mi 04.06.2008
Autor: fred97

Was ist denn cos(0) ????????????????????????????????????????????

   cos(0) = 1    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

FRED

Bezug
        
Bezug
lim x->0 richtig gerechnet?: merkwürdig...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Mi 04.06.2008
Autor: ardik

Hallo mrkwg,

> [mm]\limes_{n\rightarrow\null} \bruch{e^x-1}{tan(2x)}[/mm]

soll sicher so lauten (limes-Angaben):
[mm]\limes_{\green{x\rightarrow 0}} \bruch{e^x-1}{tan(2x)}[/mm]

> Somit ergibt sich : [mm]\bruch{e^x}{2*\bruch{1}{cos^2{(2x)}}}[/mm]

Sehe ich jetzt auch so.
Allerdings ergibt das dann einen Grenzwert von [mm] $\bruch{1}{2}$ [/mm] [kopfkratz3]

Schöne Grüße
 ardik

Bezug
                
Bezug
lim x->0 richtig gerechnet?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Mi 04.06.2008
Autor: mrkwg

Ups. Das war nicht gewollt. Das war von einer anderen Aufgabe.
Du hast natürlich recht!! Was mich wahrscheinlich wesentlich mehr freut als dich :)) Bin froh das da 0,5 rauskommt. Habe das auch raus.

Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de