www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - limsup(a+b)<ls(a)+ls(b)
limsup(a+b)<ls(a)+ls(b) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

limsup(a+b)<ls(a)+ls(b): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:19 Mi 01.06.2016
Autor: sinnlos123

Aufgabe
Es seien [mm] (a_{n}) [/mm] und [mm] (b_{n}) [/mm] beschränkte Folgen reeller Zahlen. Zeigen Sie:
a) [mm] \limes_{n\rightarrow\infty} [/mm] sup [mm] (a_{n}+b_{n}) \le \limes_{n\rightarrow\infty} [/mm] sup [mm] (a_{n}) [/mm] + [mm] \limes_{n\rightarrow\infty} [/mm] sup [mm] (b_{n}) [/mm]

Also was ich mir dazu gedacht habe, ist:

Links wird nur ein einziger Häufungspunkt(der maximale aus [mm] a_{n} [/mm] bzw. [mm] b_{n}) [/mm] genommen, wohingegen rechts
2 Häufungspunkte genommen werden.

Und offensichtlich ist a<a+b, bzw. andersrum.

Bin ich damit schonmal auf dem richtigen Dampfer?


Hinweis: Das ist eine Hausaufgabe.

        
Bezug
limsup(a+b)<ls(a)+ls(b): Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Mi 01.06.2016
Autor: hippias


> Es seien [mm](a_{n})[/mm] und [mm](b_{n})[/mm] beschränkte Folgen reeller
> Zahlen. Zeigen Sie:
>  a) [mm]\limes_{n\rightarrow\infty}[/mm] sup [mm](a_{n}+b_{n}) \le \limes_{n\rightarrow\infty}[/mm]
> sup [mm](a_{n})[/mm] + [mm]\limes_{n\rightarrow\infty}[/mm] sup [mm](b_{n})[/mm]
>  Also was ich mir dazu gedacht habe, ist:
>  
> Links wird nur ein einziger Häufungspunkt(der maximale aus
> [mm]a_{n}[/mm] bzw. [mm]b_{n}[/mm]

Wie ist denn das gemeint?

> ) genommen, wohingegen rechts
>  2 Häufungspunkte genommen werden.
>  
> Und offensichtlich ist a<a+b, bzw. andersrum.

Was soll das denn? Wenn Du meinst, dass es anderum richtig ist, dann schreib es doch gleich richtig auf! Oder glaubst Du etwa, dass die Ungleichung $a+b<a$ ebenso richtig ist?

>  
> Bin ich damit schonmal auf dem richtigen Dampfer?

Ich kann Dir nicht folgen. Du musst Dich präziser ausdrücken!

Wende die Definition an und schätze ab.

>  
>
> Hinweis: Das ist eine Hausaufgabe.


Bezug
        
Bezug
limsup(a+b)<ls(a)+ls(b): Antwort
Status: (Antwort) fertig Status 
Datum: 09:55 Mi 01.06.2016
Autor: fred97


> Es seien [mm](a_{n})[/mm] und [mm](b_{n})[/mm] beschränkte Folgen reeller
> Zahlen. Zeigen Sie:
>  a) [mm]\limes_{n\rightarrow\infty}[/mm] sup [mm](a_{n}+b_{n}) \le \limes_{n\rightarrow\infty}[/mm]
> sup [mm](a_{n})[/mm] + [mm]\limes_{n\rightarrow\infty}[/mm] sup [mm](b_{n})[/mm]
>  Also was ich mir dazu gedacht habe, ist:
>  
> Links wird nur ein einziger Häufungspunkt(der maximale aus
> [mm]a_{n}[/mm] bzw. [mm]b_{n})[/mm] genommen, wohingegen rechts
>  2 Häufungspunkte genommen werden.

Was soll das denn bedeuten ?

>  
> Und offensichtlich ist a<a+b,

Das ist doch Quatsch ! Das ist nur richtig, wenn b>0 ist.



> bzw. andersrum.
>  
> Bin ich damit schonmal auf dem richtigen Dampfer?

Nein.

Dir fehlen offenbar Grundlagen....

Sei [mm] (x_n) [/mm] eine beschränkte Folge. Für n [mm] \in \IN [/mm] setze

[mm] X_n:=\{x_k: k \ge n\}. [/mm]

Dann ist [mm] X_n [/mm] beschränkt.

Setze weiter

[mm] \xi_n:= \sup X_n. [/mm]

Mach Dir klar, dass [mm] (\xi_n) [/mm] beschränkt und fallend, also konvergent ist.

Es ist (nach Def.):  [mm] $\lim \sup x_n= \lim \xi_n$ [/mm]

Zur Aufgabe:

Sei

[mm] A_n:=\{a_k: k \ge n\}, B_n:=\{b_k: k \ge n\}, C_n:=\{a_k+b_k: k \ge n\} [/mm]

und

[mm] \alpha_n:= \sup A_n, \beta_n:= \sup B_n, \gamma_n:= \sup C_n [/mm]

Zeige:

   [mm] \gamma_n \le \alpha_n+\beta_n. [/mm]

Jetzt n [mm] \to \infty. [/mm]

FRED

> Hinweis: Das ist eine Hausaufgabe.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de