www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - lin. Unabhängigkeit in \IZ_3
lin. Unabhängigkeit in \IZ_3 < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin. Unabhängigkeit in \IZ_3: Spaltenhomomorphismus Matrix
Status: (Frage) beantwortet Status 
Datum: 15:42 Fr 08.06.2007
Autor: neuling_hier

Aufgabe
Betrachte den Körper [mm] $(\IZ_3, \oplus, \odot)$. [/mm]

Gegeben sei folgendes lin. Gleichungssystem mit [mm] x_1, x_2, x_3\in\IZ_3: [/mm]

[mm] \underline{0}x_1 \oplus \underline{1}x_2 \oplus \underline{2}x_3 [/mm] = [mm] \underline{0} [/mm]
[mm] \underline{1}x_1 \oplus \underline{2}x_2 \oplus \underline{0}x_3 [/mm] = [mm] \underline{0} [/mm]
[mm] \underline{2}x_1 \oplus \underline{0}x_2 \oplus \underline{1}x_3 [/mm] = [mm] \underline{0} [/mm]

Sei  A := [mm] \pmat{ \underline{0} & \underline{1} & \underline{2}\\ \underline{1} & \underline{2} & \underline{0}\\ \underline{2} & \underline{0} & \underline{1} } [/mm]
die durch das LGS definierte Matrix. Seien [mm] $S_1$, $S_2$, $S_3$ [/mm] die zu A
zugehörigen Spaltenvektoren:

[mm] S_1 [/mm] := [mm] (\underline{0}, \underline{1}, \underline{2}) [/mm] ,
[mm] S_2 [/mm] := [mm] (\underline{1}, \underline{2}, \underline{0}) [/mm] ,
[mm] S_3 [/mm] := [mm] (\underline{2}, \underline{0}, \underline{1}) [/mm] .

Ferner sei

[mm] \sigma_A [/mm] := [mm] \sigma_{(S_1, S_2, S_3)} [/mm] : [mm] \IZ^3_3 \rightarrow \IZ^3_3 [/mm] , [mm] (\lambda_1, \lambda_2, \lambda_3) \mapsto \lambda_1\cdot S_1 [/mm] + [mm] \lambda_2\cdot S_2 [/mm] + [mm] \lambda_3\cdot S_3 [/mm]

der Spaltenhomomorphismus von A.

Frage: Ist dim(Bild [mm] \sigma_A) [/mm] = 3 ?

Hallo liebes Forum,

Ich möchte zeigen, daß dim(Bild [mm] \sigma_A) [/mm] = 3 ist (meine Vermutung).

Es gilt offensichtlich

Bild [mm] \sigma_A [/mm] = [mm] [/mm] .

Nun würde ich vermuten, daß demnach dim(Bild [mm] \sigma_A) [/mm] = 3 gilt, da o.g. Erzeugnis drei Vektoren enthält, die "scheinbar" nicht lin. abhängig sind (kein Vektor ist eine Linearkombination der anderen Vektoren).

Problem: Wie zeigt man, daß [mm] {S_1, S_2, S_3} [/mm] l.u. ist?

Dazu betrachte ich o.g. homogenes LGS. Knackpunkt: Das LGS ist offensichtlich auch wahr, wenn die Lösungsvektoren (1,1,1) bzw. (2,2,2) für [mm] (x_1, x_2, x_3) [/mm] benutzt werden, sprich, wenn alle [mm] x_i [/mm] gleich sind. Es folgt also nicht, daß der Lösungsvektor stets der Nullvektor ist.

Wo ist mein Denkfehler? Wie kann ich nachweisen, daß [mm] {S_1, S_2, S_3} [/mm] l.u. ist??

Vielen Dank im voraus für eine weiterbringende Hilfe!!

        
Bezug
lin. Unabhängigkeit in \IZ_3: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Fr 08.06.2007
Autor: piet.t

Hallo,

lineare unabhängigkeit wirst Du nicht beweisen können, da die Vektoren nun mal linear abhängig sind.
Es lässt sich sogar einer als Linearkombination der anderen darstellen (wenn man es vielleicht auch nicht auf den ersten Blick sieht):
z.B. ist [mm] $S_1 [/mm] = [mm] 2*S_2+2*S_3$. [/mm] Rechne es mal nach (natürlich modulo 3), müsste stimmen....

Gruß

piet

Bezug
                
Bezug
lin. Unabhängigkeit in \IZ_3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:07 Fr 08.06.2007
Autor: neuling_hier

Hallo,

Jetzt sehe ich es auch ... Also stimmt meine Vermutung mit dim(..) = 3 dann auch nicht.

Auf jeden Fall danke für die Hilfe und die superschnelle Antwort!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de