www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - lin. Ähnlichk. als Verkettung
lin. Ähnlichk. als Verkettung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin. Ähnlichk. als Verkettung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mo 07.12.2015
Autor: Raspery21

Aufgabe
Da wir den Beweis zu folgenden Satz in der Vorlesung ausgelassen haben, wollte ich mich mal selber dran versuchen:

Zu jeder linearen Ähnlichkeit [mm] $\rho$ [/mm] mit Ähnlichkeitsfaktor [mm] $\mu$ [/mm] existiert ein [mm] $\omega\inO(v)$ [/mm] und eine lineare Abbildung [mm] $h_\mu$ [/mm] mit [mm] $h_\mu(v)=\mu\cdot [/mm] v$ für alle [mm] $v\in [/mm] V$, so dass [mm] $\rho=h_{\mu}\circ\omega$ [/mm] ist.

$O(V)$ ist die Gruppe der orthogonalen Abbildungen [mm] $\omega:V\to [/mm] V'$ mit der Eigenschaft [mm] $||\omega(v)||=1 \cdot [/mm] ||v||$ für alle [mm] $v\in [/mm] V$. Also nichts anderes als eine lineare Ähnlichkeit mit Ähnlichkeitsfaktor [mm] $\mu=1$. [/mm]


Sei [mm] $\rho:V\to [/mm] V'$ eine lineare Ähnlichkeit

[mm] $\Rightarrow ||\rho(v)||=\mu\cdot||v||\,\,\forall v\in [/mm] V$

Sei [mm] $\omega\in [/mm] O(V)$ und [mm] $h_\mu$ [/mm] eine lineare Abbildung mit [mm] $h_\mu(v)=\mu\cdot [/mm] v$,

dann gilt:

[mm] $h_{\mu}\circ \omega(v) [/mm] = [mm] h_\mu (\omega(v)) [/mm] = [mm] h_\mu [/mm] (||v||) = [mm] \mu\cdot [/mm] ||v|| = [mm] ||\rho(v)||$. [/mm]


Edit: Moment ich sehe grade, dass es ja garnicht das ist was ich beweisen wollte.


        
Bezug
lin. Ähnlichk. als Verkettung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:30 Di 08.12.2015
Autor: fred97


> Da wir den Beweis zu folgenden Satz in der Vorlesung
> ausgelassen haben, wollte ich mich mal selber dran
> versuchen:
>
> Zu jeder linearen Ähnlichkeit [mm]\rho[/mm] mit Ähnlichkeitsfaktor
> [mm]\mu[/mm] existiert ein [mm]\omega\inO(v)[/mm] und eine lineare Abbildung
> [mm]h_\mu[/mm] mit [mm]h_\mu(v)=\mu\cdot v[/mm] für alle [mm]v\in V[/mm], so dass
> [mm]\rho=h_{\mu}\circ\omega[/mm] ist.
>  
> [mm]O(V)[/mm] ist die Gruppe der orthogonalen Abbildungen
> [mm]\omega:V\to V'[/mm] mit der Eigenschaft [mm]||\omega(v)||=1 \cdot ||v||[/mm]
> für alle [mm]v\in V[/mm]. Also nichts anderes als eine lineare
> Ähnlichkeit mit Ähnlichkeitsfaktor [mm]\mu=1[/mm].
>  
> Sei [mm]\rho:V\to V'[/mm] eine lineare Ähnlichkeit
>  
> [mm]\Rightarrow ||\rho(v)||=\mu\cdot||v||\,\,\forall v\in V[/mm]
>  
> Sei [mm]\omega\in O(V)[/mm] und [mm]h_\mu[/mm] eine lineare Abbildung mit
> [mm]h_\mu(v)=\mu\cdot v[/mm],
>  
> dann gilt:
>  
> [mm]h_{\mu}\circ \omega(v) = h_\mu (\omega(v)) = h_\mu (||v||) = \mu\cdot ||v|| = ||\rho(v)||[/mm].
>  
>
> Edit: Moment ich sehe grade, dass es ja garnicht das ist
> was ich beweisen wollte.
>  


Ich versuche mal, meine hellseherischen Fähigkeiten ins Spiel zu bringen:

1. ich vermute, V und V' sind Vektorräume mit Skalarprodukt und ||*|| sind jeweils die von den Skalarprodukten induzierten Normen.

2. gegeben ist eine lineare Abbildung $ [mm] \rho:V\to [/mm] V'$ mit


     $  [mm] ||\rho(v)||=\mu\cdot||v||\,\,\forall v\in [/mm] V $.

3. zeigen sollst Du: es ex. ein [mm] $\omega \in [/mm] O(V)$ mit

(*)  [mm] $\rho=\mu* \omega$. [/mm]

( (*) ist nichts anderes als die bekloppte Schreibweise $ [mm] \rho=h_{\mu}\circ\omega [/mm] $, denn [mm] h_{\mu} [/mm] ist nichts anderes als [mm] \mu*id_V, [/mm]  derjenige, der das so geschrieben hat, gehört gesteinigt ....).



Setzt man [mm] $f:=\bruch{1}{\mu}*\rho$, [/mm] so ist $f$ eine lineare Isometrie, also

    [mm] $f\in [/mm] O(V)$,

und fertig ist der Schuh.

FRED

Bezug
                
Bezug
lin. Ähnlichk. als Verkettung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Di 08.12.2015
Autor: Raspery21


> > Da wir den Beweis zu folgenden Satz in der Vorlesung
> > ausgelassen haben, wollte ich mich mal selber dran
> > versuchen:
> >
> > Zu jeder linearen Ähnlichkeit [mm]\rho[/mm] mit Ähnlichkeitsfaktor
> > [mm]\mu[/mm] existiert ein [mm]\omega\inO(v)[/mm] und eine lineare Abbildung
> > [mm]h_\mu[/mm] mit [mm]h_\mu(v)=\mu\cdot v[/mm] für alle [mm]v\in V[/mm], so dass
> > [mm]\rho=h_{\mu}\circ\omega[/mm] ist.
>  >  
> > [mm]O(V)[/mm] ist die Gruppe der orthogonalen Abbildungen
> > [mm]\omega:V\to V'[/mm] mit der Eigenschaft [mm]||\omega(v)||=1 \cdot ||v||[/mm]
> > für alle [mm]v\in V[/mm]. Also nichts anderes als eine lineare
> > Ähnlichkeit mit Ähnlichkeitsfaktor [mm]\mu=1[/mm].
>  >  
> > Sei [mm]\rho:V\to V'[/mm] eine lineare Ähnlichkeit
>  >  
> > [mm]\Rightarrow ||\rho(v)||=\mu\cdot||v||\,\,\forall v\in V[/mm]
>  
> >  

> > Sei [mm]\omega\in O(V)[/mm] und [mm]h_\mu[/mm] eine lineare Abbildung mit
> > [mm]h_\mu(v)=\mu\cdot v[/mm],
>  >  
> > dann gilt:
>  >  
> > [mm]h_{\mu}\circ \omega(v) = h_\mu (\omega(v)) = h_\mu (||v||) = \mu\cdot ||v|| = ||\rho(v)||[/mm].
>  
> >  

> >
> > Edit: Moment ich sehe grade, dass es ja garnicht das ist
> > was ich beweisen wollte.
>  >  
>
>
> Ich versuche mal, meine hellseherischen Fähigkeiten ins
> Spiel zu bringen:
>  
> 1. ich vermute, V und V' sind Vektorräume mit
> Skalarprodukt und ||*|| sind jeweils die von den
> Skalarprodukten induzierten Normen.
>  
> 2. gegeben ist eine lineare Abbildung [mm]\rho:V\to V'[/mm] mit
>  
>
> [mm]||\rho(v)||=\mu\cdot||v||\,\,\forall v\in V [/mm].
>  
> 3. zeigen sollst Du: es ex. ein [mm]\omega \in O(V)[/mm] mit
>  
> (*)  [mm]\rho=\mu* \omega[/mm].
>  
> ( (*) ist nichts anderes als die bekloppte Schreibweise
> [mm]\rho=h_{\mu}\circ\omega [/mm], denn [mm]h_{\mu}[/mm] ist nichts anderes
> als [mm]\mu*id_V,[/mm]  derjenige, der das so geschrieben hat,
> gehört gesteinigt ....).

Mh ja das stimmt natürlich, aber steinigen will ich meinen Dozenten lieber nicht.... :D

>
>
> Setzt man [mm]f:=\bruch{1}{\mu}*\rho[/mm], so ist [mm]f[/mm] eine lineare
> Isometrie, also
>  
> [mm]f\in O(V)[/mm],
>  
> und fertig ist der Schuh.
>  
> FRED

Hi vielen dank Fred, ja genauso war das gemeint.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de