www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - lin.gleichung mit einer unbek.
lin.gleichung mit einer unbek. < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin.gleichung mit einer unbek.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:42 Di 15.04.2008
Autor: vicca

Aufgabe
auflösen nach x
8    4    10
- +  -  = -
x   x+2   x

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich bin immer nur bis zu diesem teil gekommen und weiß nicht weiter ab da:

4         2
-     =   -
x+2       x

habe versucht mit x zu multiplizieren oder mit dem kehrwert:    
x
-
2

man sieht ja dass das ergebnis x=2 ist, aber ich brauch den rechenweg, wenn man aufgaben hat die komplizierter sind.

DANKE
kann mir jemand sagen wie ich bruchstriche usw. mit tastatur eingebe?

        
Bezug
lin.gleichung mit einer unbek.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 Di 15.04.2008
Autor: schachuzipus

Hallo vicca,

erst einmal herzlich [willkommenmr]

Unter dem Eingabefenster sind etliche mathematische Symbole, wenn du da drauf klickst, wird der code angenzeigt, den du eintippen musst.

zB. \bruch{4}{x+2} ergibt [mm] $\bruch{4}{x+2}$ [/mm]

Nun zur Aufgabe:

[mm] $\bruch{8}{x}+\bruch{4}{x+2}=\bruch{10}{x}$ [/mm]

Das hast du richtig umgeformt zu [mm] $\bruch{4}{x+2}=\bruch{2}{x}$ [/mm]

Nun multipliziere die gesamte Gleichung mit [mm] $\blue{x\cdot{}(x+2)}$ [/mm] durch (beachte [mm] $x\neq [/mm] 0, [mm] x+2\neq [/mm] 0$):

Das gibt [mm] $\bruch{4\cdot{}\blue{x\cdot{}(x+2)}}{x+2}=\bruch{2\cdot{}\blue{x\cdot{}(x+2)}}{x}$ [/mm]

Nun kannst du auf beiden Seiten ausgiebig kürzen und schaffst den Rest spielend


LG

schachuzipus





Bezug
        
Bezug
lin.gleichung mit einer unbek.: Lösung
Status: (Antwort) fertig Status 
Datum: 12:54 Mi 04.06.2008
Autor: MarthaLudwig

Hallo vicca!

als Gleichung erhält man:8*(x+2)+4*x=10*(x+2),x ungleich 0 und
x ungleich -2,

die Lösung ist:x=2.

Hoffe,daß ich helfen konnte.

Grüße Martha.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de