www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - linarkombination
linarkombination < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linarkombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Mo 03.11.2008
Autor: blumee

Hallo,

ich schreibe morgen eine entscheidende Mathearbeit und komme bei der Aufgabe nicht weiter (wird wohl so ähnlich gestellt werden):

Für welche t lässt sich x als Linearkombination von a, b und c darstellen?

x(1|01|1)

a(1|0|-2)

b(0|-1|t-2)

c(-2|-t|3)

Kann ich diese Aufgabe nur als Gleichungssystem lösen, also

x = lamda1*a + lambda2 *b + lamdba3 *c

Weil hier komme ich nie auf Ergebnisse.

Ich habe als „geratene“ Lösung schon t = 0 raus, aber es gibt bestimmt noch weitere.


Bitte helft mir so schnell als nur möglich, danke!!

        
Bezug
linarkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Mo 03.11.2008
Autor: Al-Chwarizmi


> Für welche t lässt sich x als Linearkombination von a, b
> und c darstellen?
>  
> x(1|01|1)

       mit "01" ist einfach "1" gemeint, oder ??

  

> a(1|0|-2)
>  
> b(0|-1|t-2)
>  
> c(-2|-t|3)
>  
> Kann ich diese Aufgabe nur als Gleichungssystem lösen,
> also
>  
> x = lamda1*a + lambda2 *b + lamdba3 *c


Nehmen wir anstatt der Lambdas lieber u,v,w !

Dann haben wir die vektorielle Gleichung:

        [mm] u*\vektor{1\\0\\-2}+v*\vektor{0\\-1\\t-2}+w*\vektor{-2\\-t\\3}=\vektor{1\\1\\1} [/mm]

in einzelne Gleichungen aufgelöst:

          (1)  $\ u-2w=1$
          (2)  $\ -v-t*w=1$
          (3)  $\ -2u+(t-2)*v+3w=1$

Man kann die erste Gleichung verwenden, um u zu eliminieren.
Dann verbleiben die Gleichungen:

          (2)      $\ -v    - t*w = 1$
          (3*) $\ (t-2)*v\    -   w\ = 3$

$t\ *$(3*)-(2) ergibt die Gleichung:

          (4)  [mm] (t^2-2t+1)*v=3t-1 [/mm]

oder      (4)  [mm] (t-1)^2*v=3t-1 [/mm]

Nun kommt die entscheidende Überlegung:

Für t=1 wird der Faktor vor dem v gleich null,
und man hat  die Gleichung  $\ 0*v=2$ , die natürlich
unlösbar ist.
Ist aber $\ [mm] t\not=1$, [/mm] so ergibt sich $\ [mm] v=\bruch{3t-1}{(t-1)^2}$ [/mm]
Auch  $\ w=(t-2)*v-3 $  und  $\ u=2w+1$ sind dann wohlbestimmte
reelle Zahlen und definieren eine entsprechende
Linearkombination  $\ u*a+v*b+w*c=x$

Ergebnis ist also: Die Darstellung ist für alle [mm] t\in \IR\backslash\{1\} [/mm]
möglich, und dann ist sie jeweils auch eindeutig bestimmt.


LG    al-Chwarizmi








Bezug
                
Bezug
linarkombination: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:12 Mo 03.11.2008
Autor: blumee

Hallo,

das hei´t für t=2 müsste es eine Lösung geben.

Aber ich erhalte dann Widersprüche in meinem Gleichungssystem...

danke!

Bezug
                        
Bezug
linarkombination: vorrechnen!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Mo 03.11.2008
Autor: Roadrunner

Hallo blumee!


Dann rechne das doch mal bitte hier vor ...


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de