www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - linear Unabhängig
linear Unabhängig < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linear Unabhängig: Tipp
Status: (Frage) beantwortet Status 
Datum: 08:21 Do 26.11.2009
Autor: raubkaetzchen

Aufgabe
Seien [mm] a_1,...,a_n \in \IR_+ [/mm] fixierte, paarweise verschiedene positive Konstanten. Zeigen Sie, dass die Funktionen [mm] f_1,.....,f_n: \IR_+ [/mm] -> [mm] \IR [/mm]
mit [mm] f_k(x)=ln(a_k+x) [/mm] linear unabhängig sind.

Hallo,

irgendwie komme ich nicht auf die Lösung.

Ich habe mal angenommen, dass die Funktionen linear abhängig sind.

dann gilt:

[mm] b_1*f_1=b_2*f_2+...+b_n*f_n [/mm] für [mm] b_1,.....,b_n \in \IR. [/mm]

[mm] \Rightarrow \bruch{b_1}{a_1+x}=\bruch{b_2}{a_2+x}+...+\bruch{b_n}{a_n+x} [/mm]

so nun habe ich verschiedene fortsetzungen versucht,(z.B. nach [mm] b_1 [/mm] aufgelöst oder alles auf eine seite gebracht usw.) die aber alle in (zumindest für mich) sackgassen führten.
Was wäre die nächste Idee?

wäre nett wenn mir jemand einen tipp geben könnte.

Danke

        
Bezug
linear Unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Do 26.11.2009
Autor: Al-Chwarizmi


> Seien [mm]a_1,...,a_n \in \IR_+[/mm] fixierte, paarweise
> verschiedene positive Konstanten. Zeigen Sie, dass die
> Funktionen [mm]f_1,.....,f_n: \IR_+[/mm] -> [mm]\IR[/mm]
>  mit [mm]f_k(x)=ln(a_k+x)[/mm] linear unabhängig sind.
>  Hallo,
>  
> irgendwie komme ich nicht auf die Lösung.
>  
> Ich habe mal angenommen, dass die Funktionen linear
> abhängig sind.
>  
> dann gilt:
>  
> [mm]b_1*f_1=b_2*f_2+...+b_n*f_n[/mm] für [mm]b_1,.....,b_n \in \IR.[/mm]
>  
> [mm]\Rightarrow \bruch{b_1}{a_1+x}=\bruch{b_2}{a_2+x}+...+\bruch{b_n}{a_n+x}[/mm]
>  
> so nun habe ich verschiedene fortsetzungen versucht,(z.B.
> nach [mm]b_1[/mm] aufgelöst oder alles auf eine seite gebracht
> usw.) die aber alle in (zumindest für mich) sackgassen
> führten.
>  Was wäre die nächste Idee?


Betrachte einmal das Verhalten dieser Ableitung in der
Umgebung von [mm] x_1:=-a_1 [/mm]  !

(überdies wären Überlegungen betr. Definitionsbereich
angebracht)

LG    Al-Chw.

Bezug
                
Bezug
linear Unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 Do 26.11.2009
Autor: raubkaetzchen

Hallo,
und vielen Dank für deine Antwort.
Mein erster Gedanke war auch das Verfahren, wie du es vorgeschlagen hast.
So kommt man sehr schnell zur Lösung.

Ja, aber dann ist mir aufgefallen, dass die Funktionen [mm] f_k [/mm] doch nur für [mm] \IR_+ [/mm] definiert sind!

und da [mm] a_1>0 \gdw -a_1<0 [/mm] sind die Funktionen [mm] f_k [/mm] in [mm] x_1= -a_1 [/mm] gar nicht definiert.

Andernfalls wäre doch auch fast nichts zu Zeigen.
da die [mm] b_1,....,b_n [/mm] nur eine vertikale Verschiebung der [mm] f_k [/mm] bewirken und damit die Gleichung trivialerweise nie erfüllt werden kann.
Denn wie können funktionen, definiert auf teilweise verschiedenen Intervallen überhaupt gleich sein?

Oder irre ich mich da jetzt vollkommen?

Gruß


übrigens: was meinst du genau mit " überlegungen bzgl. des Definitionsbereichs..."?


Bezug
                        
Bezug
linear Unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 Do 26.11.2009
Autor: fred97

Nehmen wir uns doch der Übersicht wegen mal den Fall n=2 vor (der allg. Fall geht analog)

Wir müssen also zeigen: aus

               [mm] $b_1ln(a_1+x)+b_2ln(a_2+x) [/mm] = 0$  für jedes x>0

folgt: [mm] b_1=b_2 [/mm] = 0.

Deine Idee mit der Ableitung war gut !   Es folgt:

                 [mm] $\bruch{b_1}{a_1+x}+\bruch{b_2}{a_2+x}=0$ [/mm] für jedes x>0

Jetzt multipliziere mit [mm] (a_1+x)(a_2+x) [/mm] durch , mache einen Koeffizienztenvergleich und beachte [mm] a_1, a_2 [/mm] > 0

FRED

Bezug
                                
Bezug
linear Unabhängig: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:57 Do 26.11.2009
Autor: raubkaetzchen

Hallo Fred,

vielen Dank für deine Antwort! für den Fall n=2 hat es geklappt.
Nur ist das für den allgemeinen Fall n sehr viel komplexer, da ich nicht nur die Koeffizienten von zwei Polynomen zu vergleichen haben.

Außerdem weis ich nicht genau, wie die Polynomgleichung im Allgemeinen aussieht,d.h. [mm] (a_1-x)*.......(a_n-x)=? [/mm]

Kann ich jedoch so argumentieren, dass je zwei [mm] f_i,f_j [/mm] für i [mm] \not= [/mm] j linear unabhängig sind und somit alle [mm] f_k [/mm] linear unabhängig sein müssen?

Gruß

Bezug
                                        
Bezug
linear Unabhängig: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Sa 28.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de