www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - linear unabhängig !
linear unabhängig ! < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linear unabhängig !: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Di 08.04.2008
Autor: Raiden82

Aufgabe
Gegeben sind die Vektoren [mm] \vektor{-3 \\ -7 \\-3} [/mm] und [mm] \vektor{7 \\ 2 \\ 8}. [/mm]

Geben Sie einen Vektor an, der linear unabhängig von den beiden Vektoren ist.

Kann mir bitte jemand einen Tipp zur Lösung geben wie gehe ich daran ?

Thx


        
Bezug
linear unabhängig !: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Di 08.04.2008
Autor: barsch

Hi,

> Gegeben sind die Vektoren [mm]\vektor{-3 \\ -7 \\-3}[/mm] und
> [mm]\vektor{7 \\ 2 \\ 8}.[/mm]
>  
> Geben Sie einen Vektor an, der linear unabhängig von den
> beiden Vektoren ist.
>  Kann mir bitte jemand einen Tipp zur Lösung geben wie gehe
> ich daran ?
>  
> Thx


Nehmen wir an, wir haben drei linear unabhängige Vektoren des [mm] \IR^3 [/mm] - [mm]x=\vektor{-3 \\ -7 \\-3}[/mm], [mm]y=\vektor{7 \\ 2 \\ 8}[/mm], [mm] z=\vektor{a \\b \\ c}. [/mm] Dann schreibst du diese Vektoren in eine Matrix:

[mm] \pmat{ -3 & -7 & -2 \\ 7 & 2 & 8 \\ a & b & c } [/mm]

Wenn x,y,z linear unabhängig, was wir annehmen, dann hat die Matrix vollen Rang. Mit Gauß erhalten wir:

[mm] \pmat{ -3 & -7 & -2 \\ 0 & -43 & 38 \\ a & b & c } [/mm]

Jetzt kannst du dir überlegen, wie du a,b,c wählen musst/kannst, damit die Matrix vollen Rang hat und x,y,z somit linear unabhängig sind.

MfG barsch


Bezug
                
Bezug
linear unabhängig !: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Di 08.04.2008
Autor: Raiden82

Sorry wenn ich nun unwissend klinge wir sind in Mathe erst bei Vektoren Matrix kommt erst noch. weiß zwar was das ist, aber was bedeutet "voller Rang " ?

Bezug
                        
Bezug
linear unabhängig !: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Di 08.04.2008
Autor: abakus


> Sorry wenn ich nun unwissend klinge wir sind in Mathe erst
> bei Vektoren Matrix kommt erst noch. weiß zwar was das ist,
> aber was bedeutet "voller Rang " ?

Bilde doch einfach das Vektorprodukt der beiden gegebenen Vektoren.
Viele Grüße
Abakus


Bezug
                                
Bezug
linear unabhängig !: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Mi 09.04.2008
Autor: Raiden82

Danke!! klapte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de