www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - linear unabhängige Teilmenge
linear unabhängige Teilmenge < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linear unabhängige Teilmenge: Verfahren
Status: (Frage) beantwortet Status 
Datum: 18:55 Mi 29.10.2008
Autor: TheTim

Aufgabe
Man gebe für folgende Teilmenge des  [mm] \IQ^{4} [/mm] eine maximale linear unabhängige Teilmenge an:

{ [mm] \vektor{-2 \\ -2 \\ 2 \\ 2},\vektor{3 \\ 2 \\ 1 \\ -2},\vektor{0 \\ 1 \\ -4 \\ -1},\vektor{1 \\ 2 \\ 3 \\ -2},\vektor{3 \\ 0 \\ 1 \\ 0} [/mm] }

Ich weiß, das ist eine ganz leichte Aufgabe, aber ich würde gerne Wissen, wie sie sich am schnellsten lösen lässt. Kann ich mit dem gaußschen Eliminationsverfahren arbeiten? Wenn ja, wie genau setzt ich es hier zur Lösung ein?

Oder muss ich die Vektoren wirklich einzeln mit der Linearkombination der anderen gleich setzen, um auf lineare Unabhängigkeit zu prüfen?

        
Bezug
linear unabhängige Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mi 29.10.2008
Autor: Bastiane

Hallo TheTim!

> Man gebe für folgende Teilmenge des  [mm]\IQ^{4}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

eine maximale

> linear unabhängige Teilmenge an:
>  
> { [mm]\vektor{-2 \\ -2 \\ 2 \\ 2},\vektor{3 \\ 2 \\ 1 \\ -2},\vektor{0 \\ 1 \\ -4 \\ -1},\vektor{1 \\ 2 \\ 3 \\ -2},\vektor{3 \\ 0 \\ 1 \\ 0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> }
>  Ich weiß, das ist eine ganz leichte Aufgabe, aber ich
> würde gerne Wissen, wie sie sich am schnellsten lösen
> lässt. Kann ich mit dem gaußschen Eliminationsverfahren
> arbeiten? Wenn ja, wie genau setzt ich es hier zur Lösung
> ein?
>  
> Oder muss ich die Vektoren wirklich einzeln mit der
> Linearkombination der anderen gleich setzen, um auf lineare
> Unabhängigkeit zu prüfen?

Wie du wahrscheinlich schon selbst festgestellt hast, können in einem 4-dimensionalen Raum maximal 4 Vektoren linear unabhängig sein. Wie du die lineare Unabhängigkeit prüfst, ist die überlassen, aber du wirst wohl nicht drum rum kommen, alle Möglichkeiten auszuprobieren, also bei insgesamt 5 Vektoren gibt es dann ja $\vektor{5\\4}$ Möglichkeiten, 4 Vektoren auszuwählen. Gauß-Verfahren geht, ich würde aber mit Determinanten rechnen, wenn du das kannst, ich denke, das geht schneller.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
linear unabhängige Teilmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:58 Mi 29.10.2008
Autor: TheTim

Hallo Bastiane,

ich habe mal alle Vektoren in eine Matrix eingetragen und diese dann auf Stufenform gebracht. Danach konnte man sehen, dass es mehrer Lösungen gibt. Erst durch das Wegstreichen zweier Vektoren (Spalten) entstand ein eindeutig lösbares homogenes Gleichungssystem, wodurch diese verbleibenden drei Vektoren linear unabhängig waren.

Ich hoffe, das habe ich richtig und nichts übersehen.

Gruß,
Tim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de