www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - lineare Abbilding
lineare Abbilding < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abbilding: Kanonische basis
Status: (Frage) beantwortet Status 
Datum: 13:03 Mo 06.06.2005
Autor: Quin026

Hallo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
ich habe eine Übungsaufgabe von linaeralgebra und ich komme einfach nicht auf die lösung der Aufgabe. Vieleicht könnt ihr mir helfen:

Die lineare Abbildung [mm] A:(R^3 \to R^4) [/mm] sei gegeben durch


A [mm] \vektor{V1 \\ V2\\ V3}= \pmat{ V1 & 0 & -V3 \\ V1 & +V2 & V3 \\ 0 & -V2 & 0 \\ 0 & -V2 & +V3 } [/mm]

Ermittel sie bezüglich der kanonischen Basis die Matrix M zu A.

danke schon mal für eure Hilfe


        
Bezug
lineare Abbilding: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Mo 06.06.2005
Autor: DaMenge

Hi,

wiedermal der wirklich wahre Tipp ist : Die Bilder der Basisvektoren stehen als Spalten in der Abbildungsmatrix.

Also : nimm deinen ersten Vektor der kanonischen Basis, also [mm] $\vektor{1\\0\\0}$, [/mm] und berechne sein Bild nach der Vorschrift, die du gegeben hast.
Dies ist deine erste Spalte der Matrix, die du suchst.

Analog mit den beiden anderen Basisvektoren.
Du erhälst also eine 4x3 Matrix.

viele Grüße
DaMenge

Bezug
                
Bezug
lineare Abbilding: Ich raffe es nicht
Status: (Frage) beantwortet Status 
Datum: 14:05 Mo 06.06.2005
Autor: Quin026

Ok des mit der kanonischen Basis habe ich gerafft aber dann hänge ich wider.

Soll ich jetzt  [mm] \vektor{1 \\ 0 \\ 0} [/mm] * die erste zeile meiner Matrix machen oder so ich hab einfach keine Ahnung.

danke

Bezug
                        
Bezug
lineare Abbilding: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mo 06.06.2005
Autor: Hexe

Nein das passt schon so du machst [mm] (a_{11};a_{12}; a_{13})\cdot \vektor{1\\0\\0} [/mm] =1-0=1und so weiter...

Bezug
                        
Bezug
lineare Abbilding: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Mo 06.06.2005
Autor: DaMenge

Hallo nochmal

Ich kann ehrlich nur raten was ihr da macht - es ist doch gar keine Matrix gegeben (und mit [mm] $a_{11}$ [/mm] usw zu multiplizieren statt einzusetzen verstehe ich nicht ganz)

Deshalb mal das, was ich meinte: Du hast gegeben: $ [mm] A(\vektor{v_1\\v_2\\v_3})=\vektor{v_1 -v_3 \\v_1 +v_2 +v_3\\-v_2\\-v_2+v_3} [/mm] $
(oder interpretiere ich deine Angaben falsch?)

jetzt setze mal den ersten Einheitsvektor ein, also [mm] $v_1=1$ [/mm] und [mm] $v_2=v_3=0$, [/mm] was bekommst du dann als Bild raus?
Und dies ist dann die erste Spalte der Matrix, die du suchst.
Die anderen Spalten mit den anderen Einheitsvektoren.

viele grüße
DaMenge

Bezug
                        
Bezug
lineare Abbilding: 3 Vektoren
Status: (Frage) beantwortet Status 
Datum: 19:01 Mo 06.06.2005
Autor: Quin026

Ok meine rechnung

A [mm] \vektor{V1 \\ V2 \\ V3}= \pmat{ V1 -V3 \\ V1 +V2 + V3 \\ -V2 \\ -V2 + V3 } [/mm]

v1=1;  v2=v3=0  [mm] \Rightarrow \vektor{1 \\ 1 \\ 0 \\ 0} [/mm]

v2=1; v1=v3=0  [mm] \Rightarrow \vektor{0 \\ 1 \\ -1 \\ -1} [/mm]

v3=1; v1=v2=0  [mm] \Rightarrow \vektor{1 \\ 1 \\ 0 \\ 1} [/mm]


dann ist die Matrix  [mm] \pmat{ 1 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & -1 & 1} [/mm]

Richtig??

Wenn ja danke für eure hilfe.

Bezug
                                
Bezug
lineare Abbilding: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Mo 06.06.2005
Autor: DaMenge

Hi,

ja, deine Matrix ist richtig.
(bei dem dritten Vektor hattest du zwar einen Tippo - aber in der Matrix steht er richt.)

viele Grüße und einen schönen Abend noch.
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de