www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - lineare Abbildung
lineare Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abbildung: Ausschauen der Abbildung
Status: (Frage) beantwortet Status 
Datum: 10:53 Fr 01.04.2005
Autor: Reaper

Hallo hab eine etwas für mich verwirrende lineare Abbildung gegeben:

Sei [mm] d_{ \alpha} [/mm] die lineare Abbildung, die einer Drehung der Vektoren des  [mm] \IR^{2} [/mm] um den Winkel  [mm] \alpha [/mm] gegen den Urzeigersinn mit Mittelpunkt(0,0) entspricht.
Weiters sei [mm] s_{ \beta} [/mm] jene lineare Abbildung , die einer Spiegelung an einer durch (0,0) gehenden unter dem Winkel  [mm] \beta [/mm] zur x-Achse geneigten Geraden entspricht.
Geben Sie Matrixdarstellungen für [mm] d_{ \alpha} [/mm] und [mm] s_{ \beta} [/mm] bezüglich der kanonischen Basis an.

Also ich weiß eigentlich nicht mal auf was die Funktionen abbilden bzw. wie man das hinschreiben soll.

        
Bezug
lineare Abbildung: Drehungen
Status: (Antwort) fertig Status 
Datum: 14:06 Fr 01.04.2005
Autor: choosy

wenn man weis was gemeint ist, isses glaub ich garnicht so schwer drauf zu kommen.
drehungen um den winkel alpha sind im allgemeinen von der Form
[mm] $\pmat{ \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha }$ [/mm]


Bezug
        
Bezug
lineare Abbildung: Spiegelung als Drehung
Status: (Antwort) fertig Status 
Datum: 16:05 Fr 01.04.2005
Autor: FriedrichLaher

Hallo Reaper

eine Spiegelung eines Punktes P um eine Ursprungsgerade kannst Du als
Drehung um [mm] $2*\delta$ [/mm] betrachen wobei [mm] $\delta$ [/mm] der Winkel zwischen
der Spiegelgeraden und der Ursprungsgeraden durch den zu
spiegelnden Punkt ist.

Die Drehformel läß sich übrigens leicht herleiten wenn man die
x,y Koordinaten des zu drehenden Punktes als Real- und Imaginärteil
einer Komplexen Zahl interpretiert die mit [mm] $\cos \alpha [/mm] + [mm] \iota \sin \alpha$ [/mm]
multipliziert wird.
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de