www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - lineare Abbildung bestimmen
lineare Abbildung bestimmen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abbildung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 So 20.01.2008
Autor: Smartgirl

Aufgabe
Aufgabe 34: Gegeben seien die folgenden Vektoren aus R3:
v1 = (1, 3, -1) a1= (-1,-2,-1), a2=(1,0,-1)

Geben Sie eine lineare Abbildung f : R3 -> R3 an, für die gilt:
ker f = span (v1) und Im f = span (a1; a2)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Guten Tag,
das ist meine Aufgabe und ich habe keine Ahnung wie ich das machen soll.

Wir hatten einen Satz in der Vorlesung, der sagte, wenn Vektoren eine Basis sind gibt es genau eine lineare Abbildung und wenn es unabhängige Vektoren sind mind. eine lineare Abbildung mit gewissen Eigenschaften, aber ich weiß nicht wie mich das weiter bringt und was ich tun muss.

Liebe Grüße

        
Bezug
lineare Abbildung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 So 20.01.2008
Autor: unknown

Moin,


am einfachsten loest man die Aufgabe glaube ich so: Man kann zeigen, dass [mm] $(v_1,a_1,a_2)$ [/mm] ein Basis des [mm] $\IR^3$ [/mm] bilden. Also ist nach dem Satz, den Du zitierst, eine lineare Abbildung dadurch eindeutig bestimmt, dass Du sagst, wo [mm] $v_1$, $a_1$ [/mm] und [mm] $a_2$ [/mm] hin abgebildet werden sollen. Ein Abbildung, die tut, was Du willst ist etwa durch

     $f( [mm] \alpha v_1 [/mm] + [mm] \beta a_1 [/mm] + [mm] \gamma a_2 [/mm] ) := [mm] \beta a_1 [/mm] + [mm] \gamma a_2$ [/mm]

gegeben. [mm] ($\mathrm{spann}(a_1, a_2) [/mm] = [mm] \mathrm{im}\;f$ [/mm] und [mm] $\mathrm{spann}(v_1) \subseteq \mathrm{ker}\;f$ [/mm] sieht man und fuer [mm] $\mathrm{spann}(v_1) [/mm] = [mm] \mathrm{ker}\;f$ [/mm] kann man z. B. die Dimensionsformel bemuehen). Du kannst Dir zur Uebung ja nochmal klar machen, warum die Abbildung jetzt auf ganz [mm] $\IR^3$ [/mm] eindeutig definiert ist.

Jetzt musst Du [mm] ${\textstyle f}$ [/mm] eventuell noch bezueglich der Einheitsbasis darstellen (dafuer sollte es auch einen Satz geben) und bist fertig.


Hoffe, das hilft Dir weiter.  

Bezug
                
Bezug
lineare Abbildung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Mo 21.01.2008
Autor: Smartgirl

Dankeschöööön, ja das hilft mir total. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de