www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - lineare Abbildungen,basen IR²
lineare Abbildungen,basen IR² < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abbildungen,basen IR²: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 16:58 Mi 05.12.2007
Autor: gokhant

Aufgabe
Die Aufgabe 4(finden sie auf dem Blatt)...

[Dateianhang nicht öffentlich]

Ich weiss nicht wie ich die Aufgabe 4 lösen soll..Habe mittlerweile die Aufgaben 1-3 alle gelöst...würde gerne mich an die Aufgabe 4 herantasten aber das klappt iwie nicht so toll..könntet ihr mir mal bitte helfen..würde mich freuen wenn die antwort auf eine simple mathematische Sprache sein würde...


mfg gokhant

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
lineare Abbildungen,basen IR²: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:14 Mi 05.12.2007
Autor: Meli90

Guten Abend!
Tut mir leid, aber ich kann deine angehängte Datei schlichtweg nicht lesen..
Vielleicht kannst du die Aufgabe nochmals abschreiben, oder neu einscanne, so ist leider nicht zu gebrauchen..
Liebe Grüsse, Mel

Bezug
        
Bezug
lineare Abbildungen,basen IR²: Antwort
Status: (Antwort) fertig Status 
Datum: 02:47 Do 06.12.2007
Autor: schachuzipus

Hallo gokhant,

ich versuche das mal für die Basen [mm] $\mathcal{A}=\left\{\vektor{1\\2},\vektor{1\\3}\right\}$ [/mm] des [mm] $\IR^2$ [/mm] und

[mm] $\mathcal{B}=\left\{\vektor{1\\2\\3},\vektor{2\\1\\3},\vektor{3\\2\\1}\right\}$ [/mm] des [mm] $\IR^3$ [/mm] zu erklären:

Du hast eine Matrix [mm] $S=\pmat{0&1\\1&1\\2&0}$, [/mm] die dir bzgl. gewählter Basen eindeutig eine lineare Abbildung [mm] $L:\IR^2\to\IR^3$ [/mm] liefert

Bzgl. der Basen [mm] $\mathcal{A},\mathcal{B}$ [/mm] wird [mm] $L_{\mathcal{B}}^{\mathcal{A}}$ [/mm] durch S wie folgt festgelegt



Allg. ergibt sich die Darstellungsmatrix einer linearen Abbildung $L$, indem du den i-ten Basisvektor des Urbildraumes unter L abbildest und sein Bild als Linearkombination der Basisvektoren des Zielraumes darstellst.

Die Koeffizienten in dieser LK bilden dann die i-te Spalte der Darstellungsmatrix.

Was heißt das hier konkret?

Nun die erste Spalte der Abbildungsmatrix S ist [mm] $\vektor{\red{0}\\\red{1}\\\red{2}}$ [/mm]

Das bedeutet, dass [mm] $L\vektor{1\\2}=\red{0}\cdot{}\vektor{1\\2\\3}+\red{1}\cdot{}\vektor{2\\1\\3}+\red{2}\cdot{}\vektor{3\\2\\1}\blue{=\vektor{8\\5\\5}}$ [/mm]

Analog ist dann [mm] $L\vektor{1\\3}=1\cdot{}\vektor{1\\2\\3}+1\cdot{}\vektor{2\\1\\3}+0\cdot{}\vektor{3\\2\\1}\blue{=\vektor{3\\3\\6}}$ [/mm]

Nun möchtest du das Bild des Vektors [mm] $v=\vektor{3\\5}$ [/mm] berechnen

$u$ lässt sich als LK der Basisvektoren aus [mm] $\mathcal{A}$ [/mm] darstellen:

[mm] $\vektor{3\\5}=\lambda\cdot{}\vektor{1\\2}+\mu\cdot{}\vektor{1\\3}$ [/mm]

[mm] $\Rightarrow \lambda=4, \mu=-1$ [/mm]

also [mm] $\vektor{3\\5}=4\cdot{}\vektor{1\\2}+(-1)\cdot{}\vektor{1\\3}$ [/mm]

Nun kannst du ausnutzen, dass $L$ eine lineare Abbildung ist:

Es ist [mm] $L(v)=L\vektor{3\\5}=L\left(4\cdot{}\vektor{1\\2}+(-1)\cdot{}\vektor{1\\3}\right)=4\cdot{}L\vektor{1\\2}+(-1)\cdot{}L\vektor{1\\3}$ [/mm]

[mm] $=4\cdot{}\blue{\vektor{8\\5\\5}}+(-1)\cdot{}\blue{\vektor{3\\3\\6}}=\vektor{29\\17\\14}$ [/mm]


LG

schachuzipus

Bezug
                
Bezug
lineare Abbildungen,basen IR²: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:14 Do 06.12.2007
Autor: gokhant

Ich danke dir echt sehrrr..das war sehr gut erklärt sehr verständlich und sehr konkret ohne die Sache schwerer darzustellen als sie schon ist...ich gebe dir 10 von 10punkten !!

Mfg gokhant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de