www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - lineare Abhängigkeit
lineare Abhängigkeit < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abhängigkeit: Korrektur?!
Status: (Frage) beantwortet Status 
Datum: 20:15 Mo 04.12.2006
Autor: IrisL.

Aufgabe
a) Für welche c [mm] \in \IR [/mm] sind die drei Vektoren (c,1,0) , (1,c,1) und (0,1,c) linear abhängig im [mm] \IR^{3}? [/mm]
b) Wie lautet die Antwort zu a), wenn man [mm] \IR [/mm] durch [mm] \IQ [/mm] ersetzt?
c) Es sei [mm] \IK [/mm] ein beliebiger Körper. Für welche c [mm] \in \IK [/mm] sind die Vektoren (1+c,1-c) und (1-c,1+c) linear abhängig?

Huhu!

Folgende Antworten habe ich:

a) Lineare Abhängigkeit ist gegeben, wenn sich die Vektoren als Linearkombination schreiben lassen:
[mm] \vektor{c \\ 1 \\0}= p*\vektor{0 \\ 1 \\c}+ q*\vektor{1 \\ c\\1} [/mm]

also muß folgendes LGS lösbar sein:

[mm] \pmat{ 0 & 1 & c \\ 1 & c & 1 \\ c & 1 & 0 }= \pmat{ 1 & c & 1 \\ 0 &1 & c \\ c & 1 & 0 }=\pmat{ 1 & c & 1 \\ 0 &1 & c \\ c & 0 & -c } [/mm]

Darin ergibst sich für p= -1 und q=c. Diese Werte in die erste Zeile einsetzen ergibt für c=0.

b) Die Antwort bleibt gleich.

c) [mm] \vektor{1+c \\ 1-c}= p*\vektor{1-c \\ 1+c} [/mm]

Daraus ergibt 1+c=1-c. Im [mm] \IF_{2} [/mm] gilt dies für c=1 und c=0, ansonsten nur für c= 0.

Sind die Ergebnisse so okay? Es irritiert mich immer ein bißchen, wenn sich eigentlich kaum was ändert. (siehe a) und b))

Vielen Dank und Gruß
Iris

Ich habe die Frage in keinem anderen Forum gestellt

        
Bezug
lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Mo 04.12.2006
Autor: DaMenge

Hallöchen,


> also muß folgendes LGS lösbar sein:
>  

leider hast du kein LGS hingeschrieben, sondern nur die linke Seite umgeformt, aber ich hoffe, du weißt, was du meinst^^


> [mm]\pmat{ 0 & 1 & c \\ 1 & c & 1 \\ c & 1 & 0 }= \pmat{ 1 & c & 1 \\ 0 &1 & c \\ c & 1 & 0 }[/mm]

[ok]

[mm] >=\pmat{ 1 & c & 1 \\ 0 &1 & c \\ c & 0 & -c }[/mm] [/mm]

wieso?
hier wären ein paar zwischebemerkungen hilfreich...
wenn ich von oben rechne:
letzte Zeile minus c-mal der ersten zeile bekomme ich:
[mm] $=\pmat{ 1 & c & 1 \\ 0 &1 & c \\ 0 & 1-c^2 & -c }$ [/mm]

müsste man also noch weiter umformen...

ahh ,moment - nun weiß ich , was du gemacht hast, aber man sollte es schon auf zeilenstufenform bringen, wenn du das HOMGENE geleichungssystem lösen willst, oder wie hast du jetzt auf p und q geschlossen ?!?!




> c) [mm]\vektor{1+c \\ 1-c}= p*\vektor{1-c \\ 1+c}[/mm]
>  
> Daraus ergibt 1+c=1-c.

wieso?
da steht zeilenweise : 1+c=p*(1-c)
(und umgekehrt)


>Im [mm]\IF_{2}[/mm] gilt dies für c=1 und

> c=0, ansonsten nur für c= 0.


die antwort hört sich allerdings richtig an, nur ein bischen ausführlicher wäre nett..
(also für denjenigen korrekteur, der die punkte zu vergeben hat... *hust*)

viele Grüße
DaMenge

Bezug
                
Bezug
lineare Abhängigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:53 Di 05.12.2006
Autor: IrisL.

Huhu!

Also das soll schon ein LGS sein, bloß fehlt da der Strich vor der Lösung.
In Formeln steht in der letzten und vorletzten Zeile:

p*c=-c
1*q=c. In der ersten dann: 1*p+c*q=1, also [mm] -1+c^2=1. [/mm]


>wieso?
>da steht zeilenweise : 1+c=p*(1-c)
>(und umgekehrt)

Genau. Und das kann ich umformen in p=(1+c)/(1-c) und p=(1-c)/(1+c)
daraus ergibt sich [mm] (1+c)^2=(1-c)^2, [/mm] also 1+c=1-c, damit die beiden Gleichungen erfüllt sind.

Was könnte man denn zum F2 noch weiter schreiben? Daß das gilt, weil 1+1=0 ist und 1-1=0 und deswegen die Gleichung auch für c=1 erfüllt ist?

Gruß
Iris



Bezug
                        
Bezug
lineare Abhängigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Do 07.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de