www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - lineare Abhängigkeit
lineare Abhängigkeit < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Sa 08.03.2008
Autor: Kueken

Aufgabe
Zeigen Sie: ISt einer von mehreren Vektoren der Nullvektor, so sind diese Vektoren linear abhängig.

Hi!

Also ich hab mir schonmal ein paar Gedanken dazu gemacht.
Ist ja eigentlich klar, dass die voneinander abhängig sein müssen, weil man jeden Vektor ja mit 0 multiplizieren kann und dann der Nullvektor rauskommt.
Hab auch schon ein Gaußsystem mit 2 Vektoren (a1;a2;a3) und (b1;b2;b3) und nem Nullvektor aufgestellt.
Aber es kam nur Müll raus. Außerdem geht es ja um mehrere und nicht um zwei Vektoren zusätzlich.
Kann mir vielleicht jemand kurz nen Ansatz geben und mir sagen in wieweit meine Ansätze falsch sind?

Vielen Dank und liebe Grüße
Kerstin

        
Bezug
lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Sa 08.03.2008
Autor: schachuzipus

Hallo Kerstin,

dein erster Ansatz gefällt mir ganz gut ;-)

Nimm dir ne Menge, sagen wir [mm] $M=\{\vec{0},\vec{v}_1,...,\vec{v}_n\}$ [/mm] her und setze die übliche Linearkombination des Nullvektors an:

[mm] $\lambda_1\cdot{}\vec{0}+\lambda_2\cdot{}\vec{v}_1+....+\lambda_{n+1}\cdot{}\vec{v}_n=\vec{0}$ [/mm]

Für die lineare Abhängigkeit musst du ja zeigen, dass nicht alle [mm] $\lambda_i=0$ [/mm] sind.

Wie wäre es also, wenn du zB. [mm] $\lambda_1=37$ [/mm] setzt und [mm] $\lambda_2,...,\lambda_{n+1}=0$ [/mm]

Also nur deinen ersten Ansatz zu Ende spinnen ....


LG

schachuzipus

Bezug
                
Bezug
lineare Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Sa 08.03.2008
Autor: Kueken

vielen dank für deine Antwort.

Soweit ist alles klar. Also ich kann lambda1 gleich irgendeine Zahl setzen und es wird unendlich viele Lösungen geben weil lambda 1 alles sein kann.
Aber wie zeig ich das in der richtigen mathematischen Form?

lg
Kerstin

Bezug
                        
Bezug
lineare Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Sa 08.03.2008
Autor: schachuzipus

Hallo nochmal,

> vielen dank für deine Antwort.
>  
> Soweit ist alles klar. Also ich kann lambda1 gleich
> irgendeine Zahl setzen und es wird unendlich viele Lösungen
> geben weil lambda 1 alles sein kann. [ok]
>  Aber wie zeig ich das in der richtigen mathematischen
> Form?

Ist es das denn nicht?

Die lineare Abhängigkeit ist doch eine Existenzaussage.

Du musst zeigen, dass es in der obigen LK (mindestens) ein [mm] $\lambda_i\neq [/mm] 0$ gibt.

Also schreib: wähle [mm] $\lambda_1=7348292980$ [/mm] ;-) und [mm] $\lambda_i=0$ [/mm] für [mm] $i\neq [/mm] 1$, dann ist die LK erfüllt und die Vektoren sind lin. abh.

fertig ;-)


>  
> lg
>  Kerstin  

Gruß

schachuzipus

Bezug
                                
Bezug
lineare Abhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Sa 08.03.2008
Autor: Kueken

so einfach ist das?
is ja toll =)
Dankeschön!

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de