www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - lineare Abhängigkeit von 2 Vek
lineare Abhängigkeit von 2 Vek < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abhängigkeit von 2 Vek: Aufgabe/Frage + Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 22:06 Do 04.11.2004
Autor: The_Grim_Reaper

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hab diese Aufgabe gestellt bekommen und soll sie nun ausarbeiten, jedoch komm ich nicht wirklich weiter, da ich nicht genau weiss was ich machen soll...

Hier der original Wortlaut der Fragestellung:
" Aufgabe: Seien die Vektoren a=[a1,a2], b=[b1,b2]  [mm] \in [/mm] von K² gegeben. Dann sind die Vektoren a,b linear abhängig (d.h. es gibt  [mm] (\lambda1, \lambda2) \not= [/mm] (0,0) mit [mm] a*\lambda1+b*\lambda2=0 [/mm] ) genau dann, wenn es eine lineare Gleichung u1*x1+u2*x2=0 mit (u1,u2) [mm] \not= [/mm] (0,0) gibt, die von a,b erfüllt wird. "


Mein Ansatz: Ich stelle die Folgenden Gleichungen auf:

aus [mm] a*\lambda1+b*\lambda2=0 [/mm] folgt:
[mm] a1*\lambda1+b1*\lambda2=0 [/mm]   ->   [mm] a1=b1*(-\lambda2*\lambda1^{-1}) [/mm]
[mm] a2*\lambda1+b2*\lambda2=0 [/mm]   ->   [mm] a2=b2*(-\lambda2*\lambda1^{-1}) [/mm]
    wobei  [mm] \gamma [/mm] := [mm] -\lambda2*\lambda1^{-1} [/mm]

aus u1*x1+u2*x2=0 folgt:
u1*a1=-u2*a2   ->   a1=(-u1^(-1)*u2)*a2
u1*b1=-u2*b2   ->   b1=(-u1^(-1)*u2)*b2
   wobei  [mm] \delta [/mm] := -u1^(-1)*u2

und ich glaube nun dass ich zeigen muss:
wenn ich folgende Matrix betrachte:
[mm] \pmat{ a1 & b1 \\ a2 & b2 } [/mm]
dass wenn 1 Zeile mit [mm] "\delta" [/mm] in zweite zeile übergeht, dass 1.Spalte in zweite mit [mm] \gamma [/mm] übergeht und umgekehrt!

Bin aber nicht ganz sicher was die Fragestellung verlangt und wenn mein Ansatz passt wie ich das weiter durchführe!

Danke für euer Bemühen, Greets Chris!

        
Bezug
lineare Abhängigkeit von 2 Vek: Hin-Richtung
Status: (Antwort) fertig Status 
Datum: 16:48 Do 11.11.2004
Autor: Julius

Hallo!

Ich mache dir mal [mm] "$\Rightarrow$" [/mm] vor.

Im Falle $a=0=b$ ist die Aussage trivial (wähle [mm] $u_1=1=u_2$). [/mm] Ist [mm] $a=(a_1,a_2) \ne [/mm] (0,0)$, so ist [mm] $b=(b_1,b_2)$ [/mm] notwendig ein Vielfaches von $a$, d.h. es gibt ein [mm] $\lambda \in \IK$ [/mm] mit

$b= [mm] \lambda [/mm] a$.

Nun ist die Gleichung

[mm] $u_1 \cdot x_1 [/mm] + [mm] u_2 \cdot x_2$ [/mm]

mit

[mm] $u_1:=-a_2$ [/mm]      und      [mm] $u_2:=a_1$ [/mm]

die gewünschte Gleichung, denn es gilt:

[mm] $u_1 \cdot a_1 [/mm] + [mm] u_2 \cdot a_2 [/mm] = [mm] -a_2\cdot a_1 [/mm] + [mm] a_1 \cdot a_2=0$ [/mm]

und

[mm] $u_1 \cdot b_1 [/mm] + [mm] u_2 \cdot b_2 [/mm] = [mm] -a_2\cdot \lambda \cdot a_1 [/mm] + [mm] a_1 \cdot \lambda \cdot a_2=0$. [/mm]

Vielleicht kriegst du die Rückrichtung [mm] "$\Leftarrow$" [/mm] ja jetzt selber hin? :-)

Liebe Grüße
Julius


Bezug
                
Bezug
lineare Abhängigkeit von 2 Vek: Hinweis/ Mitteilung!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Do 11.11.2004
Autor: The_Grim_Reaper

Servus,

werd mir deinen Lösungsvorschlag mal ansehen und versuchen nachzuvollziehen!

werd desweiteren in den nächsten Tagen auch kurz meinen Professor zu Rate ziehen und ihn bitten mir kurz zu erklären, was genau ich bei diesem Bsp machen muss!

Sobald ich mehr weiß und mir Gedanken über den Ansatz von Julius gemacht hab, werd ich mich wieder melden!

Danke, Greets Chris

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de