lineare Rangstatistik < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 14:40 Mo 04.06.2012 | Autor: | dennis2 |
Aufgabe | Zeigen Sie, dass für eine lineare Ordnungsstatistik [mm] $S=\sum_{i=1}^{N}a_ib(R_i)$ [/mm] mit [mm] $a_1=\hdots=a_m=0, a_{m+1}=\hdots=a_{N}=1$ [/mm] eine Darstellung [mm] $S=\sum_{j=1}^{N}b_jZ_j$ [/mm] gilt mit
[mm] $Z_j=\begin{cases}0, & X_{(j)}\mbox{ gehört zu }X_1,\hdots,X_m\\ 1, & X_{(j)}\mbox{ gehört zu }X_{m+1},\hdots,X_{N}\end{cases}$ [/mm] |
Hallo, ich schreibe Euch erstmal die Definition(en) hin, die wir benutzen:
(i) Eine Abbildung [mm] $s\colon\Pi_n\to\mathbb{R}$ [/mm] gegeben durch [mm] $s(\pi):=\sum_{i=1}^{n}\alpha(i,\pi(i))$ [/mm] mit [mm] $(\alpha_{ij})=A\in\mathbb{R}^{n\times n}$ [/mm] heißt [mm] \textit{lineare Permutationsstatistik} [/mm] (Notation: [mm] $s^{(A)}(\pi)$).
[/mm]
(ii) Eine lineare Permutationsstatistik mit [mm] $\alpha_{ij}=a_ib_j, i,j=1,\hdots,n$ [/mm] für [mm] $a=\pmat{ a_1 \\ \vdots \\ a_n }, b=\pmat{ b_1 \\ \vdots \\ b_n }\in\mathbb{R}^{n}$, [/mm] also [mm] $A=a\cdot b^{T}$, $s(\pi):=\sum_{i=1}^{n}a_ib(\pi(i))$ [/mm] heißt [mm] \textit{einfache lineare Permutationsstatistik} [/mm] (Notation: [mm] $s^{(a,b)}(\pi)$).
[/mm]
(iii) Sei X eine [mm] $\mathbb{R}^{n}$-wertige [/mm] Zufallsvariable und [mm] $P(r(X)=R\in\Pi_n)=1$ [/mm] (d.h. es treten keine Bindungen auf). Die Zufallsvariable [mm] $S^{(A)}:=s^{(A)}(R)=s^{(A)}(r(X))=\sum_{i=1}^{n}\alpha(i,R_i)$ [/mm] heißt [mm] \textit{lineare Rangstatistik}.
[/mm]
(iv) [mm] $S^{(a,b)}:=s^{(a,b)}(R)=\sum_{i=1}^{n}a_ib(R_i)$ [/mm] heißt [mm] \textit{einfache lineare Rangstatistik}.
[/mm]
----------------------------------------------------
So viel zu den Definitionen.
Nun gilt zudem (was wir bewiesen haben bzw. was in einer Übungsaufgabe zu beweisen war) für [mm] $\pi\in\Pi_n$ [/mm] und [mm] $d=\pi^{-1}$:
[/mm]
(1) [mm] $s^{(A)}(\pi)=s^{(A^{T})}(d)$
[/mm]
(2) [mm] $s^{(a,b)}(\pi)=s^{(b,a)}(d)$ [/mm] (*)
-------------------------------------
Nun zu dem eigentlichen Beweis, den ich so geführt habe:
[mm] $S=\sum_{i=1}^{N}a_ib(R_i)=\sum_{j=1}^{N}b_ja(R_j^{-1})$, [/mm] wobei ich (*) ausgenutzt habe. Weiter gilt:
[mm] $a(R_j^{-1})=\begin{cases}0, &\mbox{ falls }R_j^{-1}\in\left\{0,\hdots,m\right\}\\1, &\mbox{ falls }R_j^{-1}\in\left\{m+1,\hdots,N\right\}\end{cases}$
[/mm]
Da [mm] $X_{(j)}=X_{d_j}$ [/mm] mit [mm] $d_j=R_j^{-1}$ [/mm] gilt:
[mm] $a(R_j^{-1})=0\Leftrightarrow X_{(j)}\mbox{ gehört zu }X_1,\hdots,X_m$ [/mm] und
[mm] $a(R_j^{-1})=1\Leftrightarrow X_{(j)}\mbox{ gehört zu }X_{m+1},\hdots,X_{N}$.
[/mm]
Demnach gibt es eine Funktion
[mm] $Z_j=\begin{cases}0, & X_{(j)}\mbox{ gehört zu }X_1,\hdots,X_m\\ 1, & X_{(j)}\mbox{ gehört zu }X_{m+1},\hdots,X_{N}\end{cases}$, [/mm] sodass
[mm] $S=\sum_{j=1}^{N}b_ja(R_j^{-1})=\sum_{j=1}^{N}b_jZ_j$, [/mm] da [mm] $a(R_j^{-1})$ [/mm] und [mm] $Z_j$ [/mm] für jedes [mm] $j=1,\hdots,N$ [/mm] äquivalent sind.
ENDE----------
Das war jetzt ziemlich viel Text.
Ich hoffe trotzdem, dass jemand da durchsteigt und mir ein Feedback geben kann.
Viele Grüße,
Dennis
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Mi 06.06.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|