www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - lineare algebra
lineare algebra < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare algebra: gleichung
Status: (Frage) beantwortet Status 
Datum: 08:06 Mi 14.11.2007
Autor: sweetmathe

Aufgabe
gegeben sind die folgenden drei durch gleichungen beschriebenen Ebenen:

1*x1 + 1*x2 + 2*x3 = 1 (Ebene 1)
4*x1 + 5*x2 + 8*x3 = 1 (Ebene 2)
-x1 + 1*x2 + 2*x3 = 1 (Ebene 3)

lösen sie das gesamte gleichungssystem und geben sie die lösungsmenge an. Welcher mengentheoretische durchschnitt egibt sich nun?

Hallo,

kann mir bitte jemand helfen diese aufgabe zu lösen?

gegeben sind die folgenden drei durch gleichungen beschriebenen Ebenen:

1*x1 + 1*x2 + 2*x3 = 1 (Ebene 1)
4*x1 + 5*x2 + 8*x3 = 1 (Ebene 2)
-x1 + 1*x2 + 2*x3 = 1 (Ebene 3)

die unbekannten X mit index! ich konnte es nicht kleiner darstellen :-(

die frage:
lösen sie das gesamte gleichungssystem und geben sie die lösungsmenge an. Welcher mengentheoretische durchschnitt egibt sich nun?

vielen vielen dank :-)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
lineare algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Mi 14.11.2007
Autor: rabilein1

  
> die unbekannten X mit index! ich konnte es nicht kleiner
> darstellen :-(

Das geht aber:
[mm] x_{1} [/mm]  -   [mm] x_{2} [/mm]  -   [mm] x_{3} [/mm]

Siehe unter "Eingabehilfen". Da steht  [mm] x_{2}. [/mm] Da klickst du drauf. Dann erscheint das im Fensterchen und da kannst du es dann kopieren.
  

> die frage:
> lösen sie das gesamte gleichungssystem und geben sie die
> lösungsmenge an. Welcher mengentheoretische durchschnitt
> egibt sich nun?

Das sind drei Gleichungen mit drei Unbekannten.
Du kannst z.B. alle drei Gleichungen nach [mm] x_{1} [/mm] auflösen. Dann hast du nur noch zwei Unbekannte. Und kannst daraus zwei Gleichungen bilden, indem du das, was bei [mm] x_{1} [/mm] rauskommt, jeweils gleichsetzt.
.
Und dann die beiden Gleichungen nach [mm] x_{2} [/mm] auflösen.
Dann hast du nur noch [mm] x_{3} [/mm] gleich eine Zahl.

Bezug
                
Bezug
lineare algebra: LGS
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:14 Mi 14.11.2007
Autor: sweetmathe

ich hab jetzt folgendes bekommen
matrix 1 1 2 1
           4 5 8 1
           -1 1 2 1
lösung des LGS
                 1 0 0 0
                 0 1 0 -3
                 0 0 1 2
die schneiden sich im punkt (0,-3, 2)

richtig?

danke>  

> > die unbekannten X mit index! ich konnte es nicht kleiner
> > darstellen :-(
>  
> Das geht aber:
> [mm]x_{1}[/mm]  -   [mm]x_{2}[/mm]  -   [mm]x_{3}[/mm]
>  
> Siehe unter "Eingabehilfen". Da steht  [mm]x_{2}.[/mm] Da klickst du
> drauf. Dann erscheint das im Fensterchen und da kannst du
> es dann kopieren.
>
> > die frage:
> > lösen sie das gesamte gleichungssystem und geben sie die
> > lösungsmenge an. Welcher mengentheoretische durchschnitt
> > egibt sich nun?
>  
> Das sind drei Gleichungen mit drei Unbekannten.
>  Du kannst z.B. alle drei Gleichungen nach [mm]x_{1}[/mm] auflösen.
> Dann hast du nur noch zwei Unbekannte. Und kannst daraus
> zwei Gleichungen bilden, indem du das, was bei [mm]x_{1}[/mm]
> rauskommt, jeweils gleichsetzt.
> .
>  Und dann die beiden Gleichungen nach [mm]x_{2}[/mm] auflösen.
> Dann hast du nur noch [mm]x_{3}[/mm] gleich eine Zahl.


Bezug
                        
Bezug
lineare algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:29 Mi 14.11.2007
Autor: angela.h.b.


> ich hab jetzt folgendes bekommen
>  matrix 1 1 2 1
>             4 5 8 1
>             -1 1 2 1
>  lösung des LGS
> 1 0 0 0
>                   0 1 0 -3
> 0 0 1 2
>  die schneiden sich im punkt (0,-3, 2)
>  
> richtig?

Hallo,

[willkommenmr].

Ja, das ist richtig.

Gruß v. Angela


Bezug
                                
Bezug
lineare algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:00 Mi 14.11.2007
Autor: sweetmathe

vielen dank!:-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de