www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - lineare funktionen
lineare funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:48 Mi 27.09.2006
Autor: rotespinne

Hallo!

Ich bräuchte bitte nochmal eure hilfe.
Die Gleichung kenne ich und ich weiß auch wie ich die steigung bzw. den y - achsenabschnitt ausrechne.

Aber hier sind einige Aufgaben bei denen ich keine idee habe und sie später meinem bruder erklären soll:/

DANKE!!!!!

1. Punkt ( 1/2 ) , Steigung = [mm] \bruch{2}{3} [/mm]

Nun solld ei Gleichung einer Geraden durch P gegeben werden.


2. ) P ( -3/5 ) Q ( 2/6 )

Gib die Gleichung der geraden PQ an . Wie ist jeweils die Steigung?

3. ) wie lautet die lineare funktion deren graph parallel zur geraden f ( x ) = 0,6 x - 4 verläuft und den Punkt A ( 2/-6) enthält?

4. ) gib die lineare funktion an deren graph die nullstelle 2,5 hat und die y - achse im Punkt P ( 0/8) schneidet

5. ) bestimme schnittpunkt und schnittwinkel der graphen g: f(x) = 2x mit f: f(x) = -0,5 x + 1


Mir fehlen hier jegliche ansätze, ist leider auch schon einiges her als ich es zuletz gemacht habe :/

        
Bezug
lineare funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Mi 27.09.2006
Autor: M.Rex

Hallo

> Hallo!
>  
> Ich bräuchte bitte nochmal eure hilfe.
>  Die Gleichung kenne ich und ich weiß auch wie ich die
> steigung bzw. den y - achsenabschnitt ausrechne.
>  
> Aber hier sind einige Aufgaben bei denen ich keine idee
> habe und sie später meinem bruder erklären soll:/
>  
> DANKE!!!!!
>  
> 1. Punkt ( 1/2 ) , Steigung = [mm]\bruch{2}{3}[/mm]
>  
> Nun solld ei Gleichung einer Geraden durch P gegeben
> werden.
>

Es gilt: y=mx+b, Du kennst m, une ein Wertepaar.
Also [mm] 2=\bruch{2}{3}*1+b\Rightarrow b=\bruch{4}{3} [/mm]


>
> 2. ) P ( -3/5 ) Q ( 2/6 )
>  
> Gib die Gleichung der geraden PQ an . Wie ist jeweils die
> Steigung?

Hier musst du die Steigung m mit folgender Formel errechnen.
[mm] m=\bruch{y_{1}-y_{2}}{x_{1}-x_{2}} [/mm]

Das  b berechnest du wie oben.

> 3. ) wie lautet die lineare funktion deren graph parallel
> zur geraden f ( x ) = 0,6 x - 4 verläuft und den Punkt A (
> 2/-6) enthält?

die Gesuchte Gerade ist parallel, hat also dieselbe Steigung wie die gegebene. Also m=0,6.
b berechnest du wie oben.

>  
> 4. ) gib die lineare funktion an deren graph die nullstelle
> 2,5 hat und die y - achse im Punkt P ( 0/8) schneidet

Hier hast du wieder zwei Punkte: P(0/8) und Q(2,5/0).


>  
> 5. ) bestimme schnittpunkt und schnittwinkel der graphen g:
> f(x) = 2x mit f: f(x) = -0,5 x + 1

Hier setzt du zuerst einmal die Geraden gleich, um den x-Wert des Schnittpunktes zu berechnen.
Also:
[mm] 2x=-\bruch{1}{2}x+1 [/mm]
[mm] \gdw \bruch{5}{2}x=1 [/mm]
[mm] \gdw x=\bruch{2}{5} [/mm]
den y-Wert kann man mit f(x) berechnen, also [mm] 2(\bruch{2}{5})=\bruch{4}{5}. [/mm]

Für den Schnittwinkel [mm] \alpha [/mm] einer geraden mit der x-Achse gilt: [mm] tan(\alpha)=m. [/mm] Jetzt kannst du für beide Geraden die jeweiligen Winkel berechnen. Den Schnittwinkel zu berechnen, sollte dann kein Probelm mehr darstellen

>  
>
> Mir fehlen hier jegliche ansätze, ist leider auch schon
> einiges her als ich es zuletz gemacht habe :/


Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de