www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - lineare homogene dfgl 2.ordn.
lineare homogene dfgl 2.ordn. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare homogene dfgl 2.ordn.: korrektur :-) / mit anhang
Status: (Frage) beantwortet Status 
Datum: 15:18 Di 25.09.2012
Autor: Cellschock

Aufgabe
Bestimmen Sie die allgemeine Lösung der linearen homogenen Differentialgleichung zweiter Ordnung

y'' + 2y' + y = 0

Welche Lösung verläuft durch den Punkt P(0/1) und hat in diesem Punkt den Anstieg -2?



bitte die letzte zeile im pdf anhang weglassen. ist die lösung zu ner anderen aufgabe. ansonsten ist das pdf leider falsch gescannt. am leichtesten dreht ihr es mit nem rechtklick um (pdf um 90° drehen steht dann da)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
lineare homogene dfgl 2.ordn.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Di 25.09.2012
Autor: Richie1401

Hallo,

Tipp die wenigen Zeilen doch hier ein. Das ist einfach angenehmer zu lesen.

Du schreibst: [mm] -2=c_2-c_1 [/mm]
Jetzt setzt du [mm] c_1=1 [/mm] ein und erhältst für [mm] c_2=-3 [/mm] ? Wie denn das?

Ansonsten ist dein y(x) allerdings richtig.
Eigentlich ist es für dich zum Überprüfen einfach. Leite ab und setze in die DGL ein.

Bezug
                
Bezug
lineare homogene dfgl 2.ordn.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 Di 25.09.2012
Autor: Cellschock

alles klar, danke. was genau soll ich dann ableiten? und wenn ich es einsetze? was müsste dann für ein ergebnis rauskommen, damit ich weiß, dass die Lösung richtig ist?

Bezug
                        
Bezug
lineare homogene dfgl 2.ordn.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Di 25.09.2012
Autor: Richie1401

Hallo,

du hast am Ende eine Lösung y(x). Dies ist ja deine Lösungskurbe und erfüllt die Differentialgleichung.

[mm] y(x)=(1-x)e^{-x} [/mm] muss also die DGL y''+2y'+y=0 erfüllen. Erfüllen heißt eben, dass beide Seiten der Gleichung für alle x im betrachteten Intervall übereinstimmen. Beachte allerdings, dass man damit die allgemeine Lösung bestätigt. Die Anfangswerte überprüft man damit nicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de