www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - lineare transformation
lineare transformation < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare transformation: es geht um einen beweis
Status: (Frage) beantwortet Status 
Datum: 23:40 Di 28.03.2006
Autor: t4z

Aufgabe
ergibt [mm] \lambda*X=Y [/mm] mit X~N(0,1) ein Y~N(0,lambda) ?

ich möchte gern zeigen, dass eine mit lambda multiplizierte normalverteilte (0,1) zufallsvariable genau eine normalverteilte (0,lambda) verteilte zufallsvariable ergibt



mit excel konnte ich dies exakt nachvollziehen, indem ich mir alle quantile der N(0,1)-verteilung in 1/10 (w'keit von 0 bis 1) schritten ausgegeben habe, diese habe ich dann jeweils mit lambda multipliziert. diese werte verglich ich dann mit den quantilen einer N(0,lambda)-verteilten variablen. es sind exakt dieselben quantile für die jeweiligen w'keiten, nur fehlt mir jetzt der treffende beweis

wikipedia sagt irgendwie, dass lambda*X+b=Y mit X~N(0,1) einem [mm] Y~N(b,lambda^2) [/mm] entspricht, dass scheint aber irgendwie nicht zu stimmen, sonst hätte ich das doch bereits in excel bemerken müssen, oder habe ich in excel einen fehler gemacht ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lineare transformation: Ein Versuch
Status: (Antwort) fertig Status 
Datum: 08:51 Mi 29.03.2006
Autor: mathiash

Hallo zusammen,

es ist ja für einereellwertige Zufallsvariable X die Verteilung [mm] F_X [/mm] definiert als

[mm] F_X(x)\:\: :=\:\: Pr\{X\leq x\} [/mm]

Nun ist die Normalverteilung die Funktion

[mm] N(x)=\frac{1}{\sqrt{2\pi}}\cdot \int_{-\infty}^{x}e^{-\frac{1}{2}y^2}\: [/mm] dy

Für [mm] Y(x):=\lambda\cdot [/mm] X(x) mit  [mm] \lambda [/mm] >0$ ist ja

[mm] F_Y(x)=\: Pr\{Y\leq x\}\: [/mm] = [mm] Pr\{X\leq\lambda\cdot x\}\: =\: F_X(x\slash \lambda) [/mm]

Wenn X normalverteilt ist, d.h. [mm] F_X(x)=N(x), [/mm] so ist also dann

[mm] F_Y(x)=N\left (\frac{x}{\lambda}\right )\: =\: \frac{1}{\sqrt{2\pi}}\cdot \int_{-\infty}^{x\slash\lambda}e^{-\frac{1}{2}y^2}\: [/mm] dy

Nun sollte man doch via Substitution

[mm] \int_a^bf(g(x)\cdot g'(x)\: dx\:\: =\:\: \int_{g(a)}^{g(b)}f(z)dz [/mm]

mit g(x) [mm] =\frac{x}{\lambda} [/mm] das Integral umschreiben können:

[mm] \frac{1}{\sqrt{2\pi}}\cdot \int_{-\infty}^{x\slash\lambda}e^{-\frac{1}{2}y^2}\: [/mm] dy = [mm] \frac{1}{\sqrt{2\pi}}\cdot \int_{-\infty}^{x} e^{-\frac{1}{2}(y\slash\lambda)^2}\cdot\frac{1}{\lambda} [/mm]

Vielleicht hilft's ja schon mal ein Stück weiter....


Gruss,

Mathias


Bezug
        
Bezug
lineare transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:15 Mi 29.03.2006
Autor: metzga

Hallo,

also den Beweis kann ich jetzt aus dem stegreif nicht, aber es gibt ein Gesetz, dass bei:
[mm]Y\ =\ \lambda X+b\ \ \Rightarrow\ E(Y)=\lambda*X+b\ und\ \ VAR(Y)=\lambda^2*VAR(X)[/mm]
Da ja nun bei der Normalverteilung der erste Wert der Erwartungswert und der zweite die Varianz:
[mm]X\sim N(0,1)\Rightarrow \lambda*X \sim N(\lambda*0, \lambda^2*1)=N(0,\lambda^2)[/mm]
Also hast dich in Excel auf jeden Fall verrechnet.
Hast du die allgemeine Normalvereilung genommen oder die Standardnormalverteilung?  
http://de.wikipedia.org/wiki/Normalverteilung

MfG

Bezug
                
Bezug
lineare transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:48 Mi 29.03.2006
Autor: metzga

jetzt ists mir wieder eingefallen:
zuerst muss man wissen, dass:
Wenn Y=g(X) wieder eine Zufallsvariable ist, so kann man den Erwartungswert von Y wie folgt berechnen:
[mm]E(Y)=\int_{-\infty}^\infty g(x) f(x)dx[/mm]  und  [mm]E(Y)=\sum_{i} g(x_i) \cdot p_i[/mm]
[mm]mit\ Y=aX+b \rightarrow\ E(Y)=\int_{-\infty}^\infty (aX+b) f(x)dx=a*\int_{-\infty}^\infty X f(x)dx+b*\int_{-\infty}^\infty f(x)dx=a*E(X)+b[/mm]
und nun im diskreten Fall:
[mm]E(Y)=E(aX+b)=\sum_{i} (aX+b) \cdot p_i=\sum_{i} aX \cdot p_i+\sum_{i} b \cdot p_i= =a*\sum_{i} X \cdot p_i+b*\sum_{i} \cdot p_i=a*E(X)+b[/mm]
Damit und dem Verschiebungssatz: [mm]VAR(X)=E(X^2)-E(X)^2[/mm]
VAR(Y)=VAR(aX+b)=E((aX+b)²)-E(aX+b)²=
=E(a²X²+2abX+b²)-(aE(X)+b)²=E(a²X²)+E(2abX)+E(b²)-[a²E(X)²+abE(X)+b²]=
=a²E(X²)+2abE(X)+b²-[a²E(X)²+2abE(X)+b²]=a²E(X²)-a²E(X)²=a²(E(X²)-E(X)²)=
=a²VAR(X)
                                                   ␟

Bezug
        
Bezug
lineare transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Mi 29.03.2006
Autor: Astrid

Hallo t4z

und [willkommenmr]!

> mit excel konnte ich dies exakt nachvollziehen, indem ich
> mir alle quantile der N(0,1)-verteilung in 1/10 (w'keit von
> 0 bis 1) schritten ausgegeben habe, diese habe ich dann
> jeweils mit lambda multipliziert.

[verwirrt] Den Sinn dieses Vorgehens verstehe ich nicht....

Nun ja.

> diese werte verglich ich
> dann mit den quantilen einer N(0,lambda)-verteilten
> variablen. es sind exakt dieselben quantile für die
> jeweiligen w'keiten, nur fehlt mir jetzt der treffende
> beweis
>  
> wikipedia sagt irgendwie, dass lambda*X+b=Y mit X~N(0,1)
> einem [mm]Y~N(b,lambda^2)[/mm] entspricht, dass scheint aber
> irgendwie nicht zu stimmen, sonst hätte ich das doch
> bereits in excel bemerken müssen, oder habe ich in excel
> einen fehler gemacht ?

Kann es vielleicht sein, dass das ein Notationsproblem ist?

[]Wikipedia gibt eine normalverteilte Zufallsvariable in der Noation
[mm]\mathcal{N}(\mu,\red{\sigma^2})[/mm] an, d.h. der zweite Eintrag gibt dir die Varianz.

Manchmal gebräuchlich ist die Notation [mm]\mathcal{N}(\mu,\red{\sigma})[/mm], d.h. der zweite Eintrag gibt die Standardabweichung. Auch bei Berechnungen mit Excel muss man die Standardabweichung angeben.

Bei der (üblicheren) Notation [mm]\mathcal{N}(\mu,\red{\sigma^2})[/mm] gilt natürlich

[mm]\lambda X \sim \mathcal{N}(0,\red{\lambda^2})[/mm].

Wenn man die Notation [mm]\mathcal{N}(\mu,\red{\sigma})[/mm] nutzt, dann gilt:

[mm]\lambda X \sim \mathcal{N}(0,\red{\lambda})[/mm].

Viele Grüße
Astrid

Bezug
                
Bezug
lineare transformation: verwechslung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Mi 29.03.2006
Autor: t4z

hallo astrid,

du hast natürlich recht. ich verwechselte bei N(0,1) die Varianz mit der Standardabweichung.

reicht es nun aus, zu sagen, dass

[mm] Y\simN(0,\lambda^2) \gdw Y=\lambda*X [/mm] mit [mm] X\sim(0,1) [/mm]

auf genau welchen satz (beweis) kann ich mich da beziehen, mir ist es mittlerweile klar, nur bin ich im formulieren und beweisen nicht gerade so gut
vielleicht ist es jedoch gar nicht nötig, diesen sachverhalt zu beweisen !?
was würdet ihr dazu sagen, wenn diese aussage teil einer wissenschaftlichen ausarbeitung ist !?

danke an alle

Bezug
                        
Bezug
lineare transformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 Mi 29.03.2006
Autor: Astrid

Hallo t4z,

> hallo astrid,
>  
> du hast natürlich recht. ich verwechselte bei N(0,1) die
> Varianz mit der Standardabweichung.
>  
> reicht es nun aus, zu sagen, dass
>
> [mm]Y\simN(0,\lambda^2) \gdw Y=\lambda*X[/mm] mit [mm]X\sim(0,1)[/mm]
>  
> auf genau welchen satz (beweis) kann ich mich da beziehen,
> mir ist es mittlerweile klar, nur bin ich im formulieren
> und beweisen nicht gerade so gut
>  vielleicht ist es jedoch gar nicht nötig, diesen
> sachverhalt zu beweisen !?

>  was würdet ihr dazu sagen, wenn diese aussage teil einer
> wissenschaftlichen ausarbeitung ist !?

Die Aussage ist ein allgemein bekannter Fakt, ein Spezialfall der Aussage:

Falls [mm]X \sim \mathcal{N}(\mu,\sigma^2)[/mm], dann ist [mm]aX+b \sim \mathcal{N}(a\mu+b,a^2\sigma^2)[/mm]. Den Beweis findest du in jedem Standardbuch zur Einführung in die Statistik oder Stochastik. Mathias hat dir den Beweis schon so gut wie aufgeschrieben.

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de