www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - lineare unabhängigkeit v. exp
lineare unabhängigkeit v. exp < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare unabhängigkeit v. exp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Di 17.04.2007
Autor: bobby

Hallo!

Ich habe folgende Aufgabe:
Für a [mm] aus\IR [/mm] sei [mm] f_{a}(x)=e^{ax}. [/mm] Zu zeigen:
Sind [mm] a_{1},...a_{n} [/mm] verschiedene reelle Zahlen und gilt für [mm] b_{1},...,b_{n} [/mm] aus [mm] \IR [/mm] : [mm] b_{1}f_{a_{1}}(x)+...+b_{n}f_{a_{n}}(x)=0 [/mm] für alle x aus [mm] \IR [/mm] , so folgt daraus, dass [mm] b_{1}=...=b_{n}=0 [/mm] ist.
Dh [mm] f_{a} [/mm] sind linear unabhängig.

Was ich dazu gedacht hab ist folgendes:

Seien die Vorauusetzungen oben angegeben.
Dann setze ich [mm] f_{a}(x)=e^{ax} [/mm] in die Gleichung ein.
Da [mm] e^{x} [/mm] ungleich 0 ist, ist auch [mm] e^{ax} [/mm] ungleich 0.
Außerdem ist [mm] e^{a_{1}x} [/mm] ungleich ... [mm] e^{a_{n}x}. [/mm]
Aus diesen Gründen kann ja die Gleichung nur 0 werden, wenn die [mm] b_{n}´s [/mm] gleich 0 sind.

Das ist glaub ich etwas allgemein, vielleicht kann mir jemand von euch helfen, ob das erstmal der richtige Ansatz ist und wie ich das vielleicht etwas fundierter schreiben könnte???

        
Bezug
lineare unabhängigkeit v. exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Di 17.04.2007
Autor: wauwau

So  stimmt das nicht, denn die [mm] b_{i} [/mm] dürfen ja auch negativ werden.....

Bezug
        
Bezug
lineare unabhängigkeit v. exp: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Di 17.04.2007
Autor: wauwau

Ich würde eher so argumentieren:

[mm] b_{1}f_{a_{1}}(x)+...+b_{n}f_{a_{n}}(x)=0 [/mm]

für alle x

impliziert, da f beliebig oft differenzierbar ist

[mm] b_{1}*a_{1}^{k}*f_{a_{1}}(x)+...+b_{n}*a_{n}^{k}*f_{a_{n}}(x)=0 [/mm]

für x=0 ergibt das beliebig viele Gleichungen in den Unbekannten [mm] b_{i} [/mm]

[mm] b_{1}*a_{1}^{k}+...+b_{n}*a_{n}^{k}=0 [/mm]

bei mehr als n Gleichungen mit n Unbekannten gibt es aber nur die Triviale Lösung...

Bezug
                
Bezug
lineare unabhängigkeit v. exp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:51 Di 17.04.2007
Autor: Leopold_Gast

Dein letzter Satz kann so nicht stehen bleiben ...

Bezug
        
Bezug
lineare unabhängigkeit v. exp: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Di 17.04.2007
Autor: Leopold_Gast

Deine Argumentation begreife ich nicht. Du machst an der entscheidenden Stelle auch drei Pünktchen. Das sind aber keine "usw."-Pünktchen, sondern sie sind wohl eher im Sinne von "hier weiß ich nicht weiter" zu verstehen.

Eine mögliche Lösung über die Algebra geht so: Setze in die Gleichung

[mm]b_1 \operatorname{e}^{a_1 x} + b_2 \operatorname{e}^{a_2 x} + b_3 \operatorname{e}^{a_3 x} + \ldots + b_n \operatorname{e}^{a_n x} = 0[/mm]

für [mm]x[/mm] nacheinander die Zahlen [mm]0,1,2,\ldots,n-1[/mm] ein. Du bekommst so ein homogenes lineares Gleichungssystem mit [mm]n[/mm] Gleichungen in den [mm]n[/mm] Unbekannten [mm]b_1,b_2,b_3,\ldots,b_n[/mm]. Dessen Determinante ist eine Vandermondesche in den Größen [mm]t_1 = \operatorname{e}^{a_1}, t_2 = \operatorname{e}^{a_2}, t_3 = \operatorname{e}^{a_3},\ldots, t_n = \operatorname{e}^{a_n}[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de