www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - lineares Gleichungssytem
lineares Gleichungssytem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineares Gleichungssytem: eindeutigkeit von lösungen
Status: (Frage) beantwortet Status 
Datum: 19:40 So 07.12.2008
Autor: Skyler

Aufgabe
[mm] A = \begin{pmatrix} \beta & 1 & 1 \\ \beta ^2 & 2 \beta-1 & 1-\beta \\ \beta^3 & 2\beta^2-1 & -\beta^2 \end{pmatrix} und \vec b = \begin{pmatrix} -1 \\ \gamma \\ 0 \end{pmatrix}[/mm]

für welche [mm] \beta , \gamma [/mm] hat das Gleichungssystem [mm] A \vec x=\vec b [/mm]

1. keine Lösung
2. eine Lösung
2. mehr als eine (Lösumgsgesamtheit angeben)

Hallo!

ich bin zunächst nach gauß auf folgende form gekommen

[mm] \begin{vmatrix} \beta & 1 & 1 \\ 0 &\beta -1 & 1-2\beta \\ 0 & 0 & \beta -1 \end{vmatrix} \begin{vmatrix} -1 \\ \gamma + \beta \\ -\beta - \gamma -\beta \gamma \end{vmatrix} [/mm]

ich weiß wenn [mm] detA \ne 0 [/mm]
dann gibt es genau eine Lösung!

doch bei den anderen weiß ich leider nicht.
es wäre super wenn ihr mir ein bisschen auf die sprünge helfen könntet wie es geht

vielen dank und gruß Skyler


        
Bezug
lineares Gleichungssytem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 So 07.12.2008
Autor: leduart

Hallo
Nachdem du das schon so schön in Dreiecksform gebracht hast, warum nicht einfach lösen? Dabei beim dividieren auf 0 achten.
Gruss leduart

Bezug
                
Bezug
lineares Gleichungssytem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 So 07.12.2008
Autor: Skyler

ja einfach lösen, ich wei´nur leider nicht für welche bedingung mein GS die aufgabenstellung erfüllt!

gruß

Bezug
        
Bezug
lineares Gleichungssytem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 So 07.12.2008
Autor: Zwerglein

Hi, Skyler,

> [mm]A = \begin{pmatrix} \beta & 1 & 1 \\ \beta ^2 & 2 \beta-1 & 1-\beta \\ \beta^3 & 2\beta^2-1 & -\beta^2 \end{pmatrix} und \vec b = \begin{pmatrix} -1 \\ \gamma \\ 0 \end{pmatrix}[/mm]
>  
> für welche [mm]\beta , \gamma[/mm] hat das Gleichungssystem [mm]A \vec x=\vec b [/mm]
>  
> 1. keine Lösung
>  2. eine Lösung
>  2. mehr als eine (Lösumgsgesamtheit angeben)
>  Hallo!
>  
> ich bin zunächst nach gauß auf folgende form gekommen
>  
> [mm]\begin{vmatrix} \beta & 1 & 1 \\ 0 &\beta -1 & 1-2\beta \\ 0 & 0 & \beta -1 \end{vmatrix} \begin{vmatrix} -1 \\ \gamma + \beta \\ -\beta - \gamma -\beta \gamma \end{vmatrix}[/mm]
>
> ich weiß wenn [mm]detA \ne 0[/mm]
>  dann gibt es genau eine Lösung!
>  
> doch bei den anderen weiß ich leider nicht.
>  es wäre super wenn ihr mir ein bisschen auf die sprünge
> helfen könntet wie es geht

Ich helf' Dir ein bisschen weiter als leduart, gehe dabei aber davon aus, dass Du richtig umgeformt hast - nachrechnen tu' ich's jetzt nicht!

Also: Offensichtlich gibt's ja 2 Sonderfälle:
(1) [mm] \beta [/mm] = 0
und
(2) [mm] \beta [/mm] = 1.
In beiden Fällen gibt's zumindest mal sicher keine eindeutige Lösung.
Ob's nun aber gar keine oder im Gegenteil [mm] \infty [/mm] viele Lösungen gibt, hängt von [mm] \gamma [/mm] ab und muss von Dir "durchgerechnet" werden.

(3) Der "Hauptfall", also das [mm] \beta [/mm] weder 0 noch 1 ist, liefert jeweils genau eine eindeutige Lösung, die Du ebenfalls ausrechnen musst.

Fang einfach mal mit (1) an und rechne "drauf los"!

mfG!
Zwerglein

Bezug
                
Bezug
lineares Gleichungssytem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 So 07.12.2008
Autor: Skyler

ja gut vielen dank, mit ein bisschen rechnen bekomm ichs dann hin, war mir nur über die fälle nicht ganz im klaren! vielen dank

mfg skyler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de