linearisierte Stabilität < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Der Zustand x=1, y=2 ist eine Gleichgewichtslage des Systems d/dtx(t)=3x³(t)-x(t)-y(t);
d/dty(t)=2x(t)y(t)-y²(t).
Überprüfen Sie diesen Zustand auf seine lokale Stabilität mit Hilfe des Kriteriums der linearisierten Stabilität. |
Also: ich weiß, dass ich die Eigenwerte dieses GLeichungssystems ausrechnen muss, leider habe ich keine Ahnung, wie ich von den Gleichungen auf meine Matrix komme. Weiters wollte ich fragen, ob mir jemand erklären könnte, was genau das Kriterium der linearisierten Stabilität ist?!
Vielen Dank für eure Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:24 Di 06.09.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|